DESIGN AND OPTIMIZATION OF A P+N+IN+ TUNNEL FET

M. Kamali Moghaddam 1 S.E. Hosseini 2

1. Electrical Engineering Department, Hakim Sabzevari University, Sabzevar, Iran, mkm_1385@yahoo.com
2. Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran, e_hosseini_98@yahoo.com

Abstract- Tunnel FETs are interesting devices for their steep sub-threshold slopes. In this paper a p+n+i+n+ tunnel FET is proposed and optimized for a high Ion/Ioff ratio and suitable output characteristics. The proposed tunnel FET has p+i+n+ structure with a δ-doped n+ region at the beginning of the channel. The proposed structure is extensively studied and the energy bands, transfer characteristics, and output characteristics are investigated. In this study, the width and the doping level of n+ δ-doped region are optimized aiming at increasing the Ion/Ioff ratio and improving the output characteristics. Moreover, the channel doping is varied in order to improve on/off characteristics. Simulations show that the proposed transistor exhibits Ion/Ioff ratio as high as 106. Also, linear and saturation regions in the output characteristics are evident, much like a MOSFET.

Keywords: Tunnel FET, Ion/Ioff Ratio, Band-to-Band Tunnelling, Off-Current.

I. INTRODUCTION

Aggressive MOSFET scaling gives rise to a number of critical issues such as source/drain-to-channel electrostatic coupling, channel transport limitations, gate tunnelling current and parasitic effects [1]. Due to short-channel effects (SCEs) such as drain-induced barrier lowering (DBL), surface scattering, and hot carrier effects, high Ioff and reduced Ion/Ioff ratio occurs for MOSFETs having channels smaller than 65 nm [2, 3]. This is because fundamental physics of MOSFETs limits the minimum of sub-threshold swing (SS) to 60 mv/dec. Moreover, with shrinking dimensions, power dissipation is becoming a major concern. As a result, reduction in Ioff is necessary for low leakage current and low standby power systems. To overcome these problems, new engineering solutions like improving the structure of the device, considering different materials with various features (Si, SiGe , Ge, etc) in the channel region [4, 5, 6], and new dielectric (high-k) [7] are suggested, some of which are being used for a better exploitation of these devices. In recent years, different devices are studied to obtain a minimum Ioff and a maximum ratio of Ion/Ioff [7].

Tunnel FETs (TFETs) which can exhibit SS lower than 60 mv/dec [11, 12] are interesting candidates for low standby power applications [13-15]. TFETs turn to on state based on band to band tunneling (BTBT) [15-19] and have the potential for very low off current with a sub-threshold swing beyond 60 mv/dec limit of conventional MOSFETs [12, 20]. Various TFETs are investigated in the literature, for example, with gate overlap/underlap [21], strained channel [22] and high-k gate dielectric [23].

Although TFETs have low off-state current, but on-state current is not acceptably high [24, 13]. This results in low Ion/Ioff ratio (on the order of 103~106 [25]) which limits application of TFETs in digital circuits [21]. Therefore new TFET designs are needed in order to attain high Ion/Ioff ratio. In order to increase on state current a SiGe delta layer at the edge of the source [26], SiGe [26], Ge [19] in the source region, double gate with a SiGe source [27] and high-k dielectric [21] is used. Using high-k gate dielectric improves on state current. Using Germanium with a lower band gap as the source material improves Ion/Ioff ratio significantly [19]. In [28] in order to increase on state current, dual material gate TFET is studied. The double gate architecture has been reported in [27]. In this paper a p-i-n TFET with a delta-doped n+ at the source side is proposed and optimized for high Ion/Ioff ratio and good output characteristics.

II. DEVICE STRUCTURE

The tunnel FET structure in this paper has four regions (p+n+i+n+) in which the source region is p+ layer, the drain region is n+ and the channel is i region (lightly doped p). In order to enhance tunnelling, a δ-doped n+ region is inserted at the beginning of the channel. The gate oxide and contact has a small overlap with the source side is proposed and optimized for high Ion/Ioff ratio and good output characteristics.

In this structure the width of the active layer is \(\delta\), the gate oxide and buried oxide thicknesses are \(t_{ox}\) and \(t_{box}\), respectively. The δ-doped n+ width is varied between \(W=1\) nm and 15 nm in order to pursue the best \(W\). The channel length is considered \(L_{ch}=100\) nm, the source and the drain doping levels are \(2\times10^{20}/cm^{3}\), the channel doping \(10^{16}/cm^{2}\), and δ-doped n+ region \(10^{19}/cm^{2}\). Table 1 summarizes the device parameters.

Simulations are performed using Atlas Silvaco device simulator, and analytic calculations according to tunnelling equations are performed in Matlab environment. Analytic calculations are based on band-to-
band tunnelling (BTBT) model \[8, 9\]. The gate and the drain voltages are swept from -0.5 to 2 V. The transfer and the output characteristics and \(I_{on}/I_{off}\) ratio are studied. To optimize the device characteristics, the width of \(\delta\)-doped \(n^+\) region is changed from \(W=1\) nm to 15 nm and the results are studied in order to optimize the width of this region. Also, the breakdown voltage in the output characteristics is studied.

After obtaining a suitable \(W\), the value of the channel doping is optimized. Finally, extensive device simulations were performed using Atlas Silvaco device simulator coupled with analytical tunnelling calculations. The tunnelling calculations in our TFET were based on the well-known equations for tunnelling current \[1\].

\[
I_f = I_{f(C\to W)} - I_{f(V\to C)} = \int_{E_C} E_f \left[F_c(E) - F_v(E) \right] T(E) n_c(E) n_v(E) dE
\]

According to this equation, the drain current is proportional to the tunnelling probability \(T(E)\), which is obtained as following \[10\]:

\[
T(E) \propto - \frac{4 \sqrt{2m^* E_g^3 / \hbar}}{3 \pi \hbar (E_g + \Delta \Phi)} \left(\frac{\varepsilon_{ox}}{\varepsilon_{si}} \right) t_{ox} l_{si} \Delta \Phi
\]

In this equation \(m^*\) is the electron effective mass, \(E_g\) is band gap, \(\Delta \Phi\) is the energy range over which tunnelling can take place, and \(t_{ox}, l_{ox}, \varepsilon_{ox}, \varepsilon_{si}\) are the oxide and silicon films thickness and dielectric constants respectively, and \(\hbar\) is the reduced Planck’s constant.

\[\text{Figure 1. Device structure of the pnn tunnel FET}\]

\[\text{Figure 2. Energy bands for } W=1\text{ nm, } V_{gs}=1\text{ V, } V_{ds}=0.1 \text{ V}\]

\[\text{Figure 3. Drain current versus } V_{gs} \text{ for } W=1\text{ nm, with } V_{ds}=0.2, 0.4, 0.5, 0.6 \text{ and 1 V}\]

\[\text{Figure 4. Drain current versus } V_{gs} \text{ for } W=2\text{ nm, with } V_{ds}=0.2, 0.4, 0.5, 0.6 \text{ and 1 V}\]

\[\text{III. SIMULATION RESULTS}\]

In Figure 2 conduction and valance bands of the tunnel FET are depicted with \(W=1\) nm, \(V_{ds}=1\) V, and \(V_{gs}=0\) & 1 V. As this figure shows when the gate voltage is 0 V, there is no region for tunnelling (i.e. there is no allowed energy levels for the electrons in the source valance band aligned with empty levels in the channel conduction band), but when the gate voltage is 1 V, the conduction band of the channel is lower than the valence band of the source. As a result, electrons of the source valance band can tunnel to the channel conduction band through the energy gap. Figures 3 and 4 show the drain current versus gate voltage for the drain voltages of 0.2, 0.4, 0.5, 0.6, 1 V, and two values of \(W=1\) and 2 nm, respectively. According to these figures, \(I_{on}\) is the same for the two values of \(W\), but \(I_{off}\) is lower for \(W=2\) nm.
In order to find breakdown voltages, the output characteristics are plotted in Figure 7 up to $V_{DS}=3.5$ V and V_{GS} as the parameter. As this figure shows, increasing the gate voltage decreases the breakdown voltage. It must be noted that since the breakdown voltage occurs due to high electric field at the drain side, W has no effect on the breakdown voltage.

The tunnelling probability depends considerably on the value of W. Figure 8 shows the drain current versus V_{GS} at $V_{DS}=0.4$ V and $W=1$ to 15 nm. With a small W, the tunnelling probability decreases which results in low off-current. On the other hand, with a large W, the tunnelling probability increases which in turn increases the on-current. Increasing I_{on} is important in tunnel FETs [1]. But with increasing W, at the same time, the off-current increases substantially which results in a low I_{on}/I_{off} ratio. Low I_{on}/I_{off} ratio prevents proper switching of the transistor from on to off state. It seems that $W=2$ nm is an optimum value for the δ-doped region width.

Figure 9 depicts energy bands at $V_{DS}=V_{GS}=0$ and two values $W=1$ nm and $W=15$ nm. At $W=1$ nm, there is no region for tunnelling, which causes a low I_{off}, i.e. a good off state. On the other hand, at $W=15$ nm, there exist a narrow tunnelling region at zero bias. This increases I_{on} which is desirable, but this tunnelling region increases I_{off} orders of magnitude, and consequently I_{on}/I_{off} ratio decreases substantially.

As figure 10 shows, the I_{on}/I_{off} ratio reveals monotonic decrease up to $W=5$ nm, after which this ratio remains essentially constant. At $W=1$ nm the I_{on}/I_{off} ratio is about 10^5. This is comparable to conventional MOSFETs.
In this paper a p+n+in+ tunnel FET is proposed and its structure is optimized in the form of δ-doped width and channel doping. The proposed structure has a high $\frac{I_{on}}{I_{off}}$ ratio and proper output characteristics. The obtained $\frac{I_{on}}{I_{off}}$ ratio is about 10^9, which is about 3 orders better than [1].

REFERENCES

BIOGRAPHIES

Mohammad Kamali Moghaddam received the B.Sc. degree in Electrical Engineering from Sabzevar Branch, Islamic Azad University, Sabzevar, Iran and M.Sc. degree from Birjand University, Birjand, Iran. Currently, he is a Ph.D. student in Electrical Engineering at Hakim Sabzevari University, Sabzevar, Iran. His research areas include microelectronic devices, SOI transistors, and device modeling.

Seyed Ebrahim Hosseini received the B.Sc. degree in Electrical Engineering from Isfahan University of Technology, Isfahan, M.Sc. degree from Tarbiat Modarres University, Tehran, Iran, and Ph.D. degree in Electrical Engineering from Sharif University of Technology, Tehran, Iran, in 2001. He is now an Associate Professor of Electronics Engineering at Ferdowsi University of Mashhad, Mashhad, Iran. His research areas include microelectronic devices, SOI transistors, and device modeling. He has authored or co-authored more than 70 conference and journal papers.