CONDUCTOR SIZE SELECTION IN PLANNING OF RADIAL DISTRIBUTION SYSTEMS FOR PRODUCTIVITY IMPROVEMENT USING IMPERIALIST COMPETITIVE ALGORITHM

Ma. Mozaffari Legha 1 R. Abdollahzadeh Sangrood 2 A. Zargar Raeisazdeh 3 Mo. Mozaffari Legha 4

1. Dept. of Power Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran, mahdi_mozaffari@ymail.com
2. Department of Power Engineering, Sari Branch, Islamic Azad University, Sari, Iran, abdollahzade@rocketmail.com
3. Department of Power Engineering, Kerman Branch, Science and Research, Islamic Azad University, Kerman, Iran
4. Departments of Electrical and Electronics Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran

Abstract- Development of distribution systems is requested in high system losses and poor voltage regulation. Consequently, an effective distribution system has become more urgent and important structure. Hence proper selection of conductors in the distribution system is important as it determines the current densities and the resistance of the lines. This paper examines the use of different evolutionary algorithms, imperialist competitive algorithm (ICA), to optimal branch conductor selection in planning radial distribution systems with the objective to minimize the overall cost of annual energy losses and depreciation on the cost of conductors and reliability in order to improve productivity. Furthermore, the backward-forward sweep iterative method was adopted to solve the radial load flow analysis. Simulations are carried out on 69-bus radial distribution network using ICA approach in order to show the accuracy as well as the efficiency of the proposed solution technique.

Keywords: Distribution System Optimization, Reliability, Imperialist Competitive Algorithm, Radial Distribution Systems, Backward-Forward Sweep, Loss Reduction.

I. INTRODUCTION

The main objective of an electrical distribution system (EDS) is providing a reliable and cost effective service to consumers with considering power quality within standard ranges. Thus, it is necessary to properly plan the EDS and thus evaluate several aspects such as, new equipment installation cost, equipment utilization rate, quality of service, reliability of the distribution system and loss minimization, considering an increase of system loads, and newly installed loads for the planning horizon [1]. There are several parameters to be taken into account to model the conductor size selection (CSS) problems such as: conductor’s economic life, discount rate, cable and installation costs and type of circuit (overhead or underground) [2].

Dynamic programming approach was utilized to solve the CSS problem in [3]. They presents models to represent feeder cost, energy loss and voltage regulation as a function of a conductor cross section. In [4], the conductor size selection performed with consideration of financial and engineering criteria in the feeder. In [5, 6] the CSS problem is solve using heuristic methods. Reference [5] uses a selection phase by means of economic criteria, followed by a technical selection using a sensitivity index that seeks to ensure a feasible operation of the EDS, whereas [6] presents a heuristic method using a novel sensitivity index for the reactive power injections.

The heuristic methods are robust, easily applied; however, they normally converge to a local optimum solution. In some studies, a linear approximation in the calculation of power losses or voltage regulation is considered [7], while other approximates the load as a constant current model [3]. In [7], a mixed integer linear model for the problem of conductor selection size in radial distribution systems is presented. In this model, the behavior of the power type load is assumed to be constant. Several studies have used evaluative techniques to solve CSS problem [8-10]. In [11] optimal CSS placement is solved with genetic algorithm.

In this paper, optimal type of conductor selection is proposed for planning radial distribution systems using different evolutionary algorithms, imperialist competitive algorithm (ICA). The objective is minimizing the overall cost of annual energy losses and depreciation on the cost of conductors and reliability in order to improve productivity with considering the maximum current carrying capacity and acceptable voltage levels. Moreover, we utilize the Backward-Forward sweep method which is simple, flexible, reliable, and didn't need Jacobian matrix and its inverse and have high convergence speed.
II. CLASSIFICATION OF THE APPROACHES

A. Optimal Conductor Size Selection

The conductor size selection problem involves determining the optimal conductor configuration for a radial distribution system, using a set of types of conductors. Each type of conductor has the following characteristics: 1) resistance per length, 2) reactance per length, 3) maximum current capacity, 4) cross-sectional area and 5) building cost per length.

B. Power Flow Analysis Method

The methods proposed for solving distribution power flow analysis can be classified into three categories: Direct methods, Backward-Forward sweep methods and Newton-Raphson (NR) methods. The Backward-Forward Sweep method is an iterative means to solving the load flow equations of radial distribution systems which has two steps. The Backward sweep, which updates currents using Kirchhoff’s Current Law (KCL), and the Forward sweep, which updates voltage using voltage drop calculations [12].

The Backward Sweep calculates the current injected into each branch as a function of the end node voltages. It performs a current summation while updating voltages. Bus voltages at the end nodes are initialized for the first iteration. Starting at the end buses, each branch is traversed towards the source bus updating the voltage and calculating the current injected into each bus. These calculated currents are stored and used in the subsequent Forward Sweep calculations.

The calculated source voltage is used for mismatch calculation as the termination criteria by comparing it to the specified source voltage. The Forward Sweep calculates node voltages as a function of the currents injected into each bus. The Forward Sweep is a voltage drop calculation with the constraint that the source voltage used is the specified nominal voltage at the beginning of each forward sweep. The voltage is calculated at each bus, beginning at the source bus and traversing out to the end buses using the currents calculated in previous the Backward Sweep [12].

C. Evolutionary Algorithms Implementation

In artificial intelligence, an Evolutionary Algorithm (EA) is a subset of Evolutionary Computation that involves combinatorial optimization problems. Optimal branch conductor selection of radial distribution systems using evolutionary methods of Imperialist Competitive Algorithm (ICA) is investigated.

III. OBJECTIVE FUNCTION

The objective is selection of conductor’s size from the available size in each branch of the system which minimizes the sum of depreciation on capital investment and cost of energy losses and reliability while maintaining the voltages at different buses within the limits. In this case, the objective function with conductor \(c \) in branch \(i \) is written as:

\[
\min f(i, c) = w_1 \cdot CE(i, c) + w_2 \cdot DCI(i, c) + w_3 \cdot F_{ENS}(i)
\]

subject to

\[
V_{\text{max}} \leq |V_i| \leq V_{\text{max}} , \quad i = 1, 2, 3, \ldots, n
\]

\[
|I_i| \leq I_{\text{max}} , \quad j = 1, 2, 3, \ldots, n-1
\]

In Equation (1), \(CE(i, c) \) is the Cost of Energy Losses, \(F_{ENS}(i) \) is the reliability, \(DCI(i, c) \) is Depreciation on Capital Investment of \(c \) conductor type of \(i \)th branch, \(n \) is buss number, \(i \) is the branch number and \(w \) is the weighting factor [13].

The annual cost of loss in branch \(i \) with conductor type \(k \) is:

\[
CE(i, c) = PL(i, c) \cdot \{K_p + K_E \cdot \delta T\}
\]

where, \(K_p \) is annual demand cost due to Power Loss ($/kW), \(K_E \) is annual cost due to Energy Loss ($/kWh), \(\delta \) is Loss factor, \(PL(i, c) \) is real Power Loss of branch \(i \) under peak load conditions with conductor type \(c \) and \(T \) is the time period in hours (8760 hours). Depreciation on capital investment is given as:

\[
DCI(i, c) = \gamma \times A(c) \times \{C_t + L_s\}
\]

where \(\gamma \) is Interest and depreciation factor, \(C_t \) is cost of type conductor ($/km), \(A(c) \) is cross-sectional area of \(c \) type conductor and \(L_s \) is length of branch \(i \) (km).

\[
F_{ENS}(i) = \frac{h}{8760} \cdot \sum U_i \times PL_i \times \text{Cost}_\text{Shed}_i
\]

where, \(F_{ENS}(i) \) is the cost of energy not supplied ($); \(U_i \) is mean outage times a year (hour/year) and \(\text{Cost}_\text{Shed}_i \) is Cost of outage time ($/kWh).

Average time to confirm any of the loads of the network is obtained from the following equation:

\[
U_i = \sum \lambda_{ij} \times r_j
\]

where, \(\lambda_{ij} \) is number of failures per year for equipment failures that result in lost time, and \(r_j \) is the average time required to fix your equipment after each fault \(j \) (hour).

IV. IMPERIALIST COMPETITIVE ALGORITHMS

ICA mimics the social-political process of imperialism and imperialistic competition. ICA starts with an initial population of individuals, each called a country. Some of the best countries are selected as imperialists and the rest form colonies which are then divided among imperialists based on imperialists’ power. After forming the initial empires, competition begins and colonies move towards the irrelevant imperialists.

During competition, weak empires collapse and powerful ones take possession of more colonies. At the end, there exists only one empire while the position of imperialist and its colonies are the same [15]. The flow chart of proposed ICA is depicted in Figure 1.
Move the colonies toward their relevant imperialist

Compute the total cost of all empires

Yes

Start

 Initialize the empires

Is there a colony in an empire which has lower cost than that of the imperialist

Exchange the position of imperialist and the colony

Pick up the weakest colony from the weakest empire and give it to the empire that has the most likelihood to to possess it

Yes

No

Eliminate this empire

Is there an empire with no colonies

Stop condition satisfied

Yes

No

Done

Figure 1. Flowchart of the proposed ICA algorithm

V. TESTS AND RESULTS

Simulations are carried out on 69-bus radial distribution network using ICA approach in order to show the accuracy as well as the efficacy of the proposed solution technique. The single line diagram for proposed radial distribution systems is shown in Figure 2. Length of all branches is considered to be equal to 60m. The properties of the new conductors used in the analysis of this system are given in Table 1. The initial data for load flow solution based on the Backward-Forward sweep are selected as: . The other parameters used in computation process are: $K_P = 1.04\ ($/kW) and $K_E = 0.012\ ($/kWh).

Table 1. Conductor properties

<table>
<thead>
<tr>
<th>Type</th>
<th>R [Ω/km]</th>
<th>X [Ω/km]</th>
<th>C_{max} [A]</th>
<th>A [mm²]</th>
<th>Cost [Rials/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyena</td>
<td>0.1576</td>
<td>0.2277</td>
<td>550</td>
<td>126</td>
<td>20750</td>
</tr>
<tr>
<td>Dog</td>
<td>0.2712</td>
<td>0.2464</td>
<td>440</td>
<td>120</td>
<td>35000</td>
</tr>
<tr>
<td>Mink</td>
<td>0.4545</td>
<td>0.2664</td>
<td>315</td>
<td>70</td>
<td>20750</td>
</tr>
</tbody>
</table>

The parameters used in ICA algorithm are: Number of Decate is 33; Population size is 100; Number of Empire is 10; and Revolution rate is 0.1. Also, loss factor, which represents adequately the energy losses for the load level in terms of the maximum power losses are selected. The results of conductor selection are shown in Table 2.

Table 2. Conductor selection results

<table>
<thead>
<tr>
<th>Conductor Design Method</th>
<th>Type</th>
<th>Branch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>Hyena</td>
<td>From 1 to 26</td>
</tr>
<tr>
<td></td>
<td>Dog</td>
<td>Rest of 68 branches</td>
</tr>
<tr>
<td></td>
<td>Mink</td>
<td>---</td>
</tr>
<tr>
<td>ICA Based</td>
<td>Hyena</td>
<td>1, 2, 3, 55, 56, 52, 53</td>
</tr>
<tr>
<td></td>
<td>Dog</td>
<td>20, 21, 26, 28, 38, 43</td>
</tr>
<tr>
<td></td>
<td>Mink</td>
<td>Rest of 68 branches</td>
</tr>
</tbody>
</table>

The voltage profile and Power loss in the system after ICA implementation is compared with Conventional conductor design and depicted in Figures 3 and 4. It can be seen that the voltage profile achieved by ICA optimization algorithms are almost the same while having better improvement in compare with Conventional method. Moreover, a decrease in peak power loss based on peak power loss profiles is illustrated. The costs based on conductor selection are compared in Table 3. The real power loss reductions are 606.7364 kW, which is approximately 5.6% in compare with the Conventional design for ICA respectively. Proceedings in a similar manner, the total cost reduction (sum of annual cost of power loss and depreciation on capital investment cost) are obtained 30% for ICA respectively.
VI. CONCLUSIONS

Optimal selection of conductor type for planning radial distribution systems using evolutionary approaches is presented with the objective to minimize the overall cost of annual energy losses and depreciation on the cost of conductors and reliability in order to improve productivity. The power losses, voltage magnitude, and current flow magnitudes are calculated using the Backward-Forward sweep method.

The performance of the proposed evolutionary approaches (ICA) in comparison with a conventional method is investigated using a 69-bus radial distribution network. The power loss reduction and voltage profile improvement has been successfully achieved which demonstrate the effectiveness of the proposed approaches. The results offer potential of using ICA for improving plant productivity and economy.

REFERENCES

BIOGRAPHIES

Mahdi Mozaffari Legha was born in Kerman, Iran. He received the M.Sc. degree from Saveh Branch, Islamic Azad University, Saveh, Iran. He is a lecturer of Power Electrical Engineering at Shoushtar Branch, Islamic Azad University, Shoushtar, Iran and teaches power system analysis, distribution systems and electrical machine. His research interests are including in the stability of power systems and power distribution systems, reliability and preventative maintenance. He has presented more than 5 journal papers and 30 conference papers.

Rouollah Abdollahzadeh Sangrood was born in Babol, Iran, in 1989. He received his B.Sc. degree in Electrical Engineering from Nour Branch, Islamic Azad University, Nour, Mazandaran, Iran in 2012. He is a M.Sc. student in Power Engineering at Sari Branch, Islamic Azad University, Sari, Iran. His research interests are including power system, restructured power system and FACTS devices, power system dynamics and control.

Ardalan Zargar Raeiszadeh was born in Rafsanjan, Iran, in 1989. He received his B.Sc. degree in Electrical Engineering from Anar Branch, Islamic Azad University, Anar, Kerman, Iran in 2012. He is a M.Sc. student in Power Engineering at Science and Research Branch, Islamic Azad University, Kerman, Iran. His research interests are including power system, restructured power system and FACTS devices, power system dynamics and control.

Mohammad Mozaffari Legha was born in Kerman, Iran, 1993. He received the B.Sc. from Kerman Branch, Islamic Azad University Kerman, Iran. His research interests are including in the stability of power systems and power distribution systems, reliability and preventative maintenance. He has presented more than 3 journal papers and 10 conference papers.