A NOVEL APPROACH TO COMPARING DESIGN OF SINGLE AND COORDINATED PSS AND FACTS DEVICES USING GA FOR POWER SYSTEM STABILITY ENHANCEMENT

J. Barati 1 I. Orak 2 H. Hemati 2

1. Electrical Engineering Department, Ramhormoz Branch, Islamic Azad University, Ramhormoz, Iran
tj_barati62@yahoo.com
2. Electrical Engineering Department, Izeh Branch, Islamic Azad University, Izeh, Iran
iman_mhtb@yahoo.com, hosein.hemmati@yahoo.com

Abstract- Power system stability enhancement by comparison design of single and coordinated the Power System Stabilizer (PSS), Static VAR Compensator (SVC), Thyristor Controlled Series Compensation (TCSC) and Static synchronous Compensator (STATCOM) based conventional lead-lag damping controller using Genetic Algorithm (GA) are presented in this paper. The eigenvalue analysis and the nonlinear simulation results are used for power system stability of single machine infinite bus (SMIB) system installed with PSS and FACTS controllers. It is worth mentioning that the PSS and FACTS based controllers help in damping power system oscillations after a disturbance so as to improve the power system stability. Finally, this analysis results reveal that TCSC-based stabilizers is much better than SVC based stabilizers on the damping power system oscillations. Furthermore, coordinated design of PSS and STATCOM based controllers has significant performance to promote the damping power system oscillations compared with SVC and TCSC based controllers.

Keywords: PSS, SVC, TCSC, STATCOM, Coordinated Design, Damping Oscillations, Genetic Algorithm, Power System Stability.

I. INTRODUCTION

Small signal stability of power systems is an important issue in long increasing power transmission line. Due to continuously growing power demand, Small signal stability is characterized by synchronizing power and damping power. The synchronizing power is defined as the component of real power in phase with the rotor angle deviation, while the damping power is defined as the component of the real power in phase with the rotor speed deviation. However, lack of damping power causes oscillatory instability, while lack of synchronizing power causes a periodic instability. Such lack of synchronizing power and damping power occurs particularly in power systems with long transmission line. To enhance system damping, the generators are equipped with power system stabilizers (PSSs) that provide supplementary feedback stabilizing signals in the excitation systems. PSSs extend the power system stability limit by enhancing the system damping of low frequency oscillations associated with the electromechanical modes [1-4].

Despite the potential of modern control techniques with different structures, power system utilities still prefer the conventional lead-lag power system stabilizer (CPSS) structure [5-7]. Kundur et al. [7] have presented a comprehensive analysis of the effects of the different CPSS parameters on the overall dynamic performance of the power system. It is shown that the appropriate selection of CPSS parameters results in satisfactory performance during system upsets. The advent of high power electronic equipment to improve utilization of transmission capacity, as envisaged in the concept of flexible alternating current transmission systems (FACTS) controllers, provides a system planner with additional leverage to improve the stability of a system. The FACTS controllers like static VAR compensator (SVC), thyristor controlled series compensator (TCSC), static synchronous compensator (STATCOM), static synchronous series compensator (SSSC), and unified power flow controller (UPFC) can provide variable shunt and/or series compensation [8].

Recently, to improve overall system performance, many researches were made on the coordination between FACTS controllers and PSS on damping power system oscillation [9-14]. Barati et al. [15] presented a coordinated PSS, SVC and TCSC control for a synchronous generator. Nonlinear optimization algorithm was presented to coordinate parameters adjustment for a TCSC, a SVC and a PSS in a power system [16]. In [17], a gain adjustment approach for a TCSC, a SVC and a PSS was introduced and the effect of gain tuning on oscillation modes and on overall power system performance are investigated. The availability of high power gate-turn-off thyristors has led to the development of a STATCOM which is one of the FACTS devices connected in shunt and to improve transmission stability and to dampen power oscillations.
Barati et al. [18] presented a coordinated PSS, SVC and STATCOM control for a synchronous generator. From the power system dynamic stability viewpoint, the STATCOM provides better damping characteristics than the SVC as it is able power system stability enhancement and damping power system oscillations. The Phillips-Heffron model of the single machine infinite bus (SMIB) power system with FACTS devices is obtained by linearizing nonlinear equations around a nominal operating point of the power system [19, 20]. The design problem is transformed into an optimization problem and GA optimization techniques are employed to search for the optimal PSS and FACTS controllers’ parameters.

In this paper the eigenvalue analysis and the nonlinear simulation results are used for small signal stability of single machine infinite bus (SMIB) system installed with PSS and FACTS controllers. This analysis shows that coordinated design of PSS and STATCOM-based controllers has significant performance to promote the damping power system oscillations compared with SVC and TCSC based controllers.

II. SYSTEM MODEL

A. Generator Model

The power system is represented by a single machine infinite-bus (SMIB) with FACTS devices is shown in Figure 1. The generator is equipped with a PSS. The generator has a local load of admittance $Y_L = g + j b$. The transmission line has impedances of $Z = R + j X$. The SVC and STATCOM are used at the middle point in transmission line and TCSC in series with the line for power oscillations damping. The system is modeled for low frequency oscillations studies and the linearized power System model is used for this purpose. The generator is represented by the 3rd order model consisting of the electromechanical swing equation and the generator internal voltage equation. The dynamics of rotor angle δ and velocity ω is described by the so-called swing equations:

$$\dot{\delta} = \omega_b (\omega - 1)$$
$$\dot{\omega} = (P_m - P_e - D (\omega - 1)) / M$$

where P_m and P_e are the mechanical and electrical power, respectively. ω_b is the mechanical angular frequency, D is the damping coefficient, and M is the moment of inertia.

The output of PSS is limited to guarantee that PSS does not counteract voltage regulator action of AVR.

$$\dot{E}_q = (E_{q0} - E_{q1}) / T_d$$

B. Exciter and PSS

Figure 2 shows the IEEE Type-ST1 excitation system is considered in this work. It can be described as:

$$\dot{E}_{dd} = (K_d (V_{ref} - V + u_{PSS}) - E_{dd}) / T_d$$

(2)

The inputs to the excitation system are the terminal voltage V and reference voltage V_{ref}. The K_d and T_d are the amplification and time constants of the excitation system. In Equations (1) and (2): P_e and V are related by the following equations:

$$P_e = V_d i_q + V_q i_d$$

(3)

$$V = (V_d^2 + V_q^2)^{1/2}, \quad V_d = x_q i_q, \quad V_q = E_q - x_d i_d$$

(4)

Figure 2 shows the transfer function of the PSS. It consists of an amplification block, a washout block and two lead-lag blocks [1]. The objective of the washout block is to act as a high pass filter that eliminates DC offset. The lead-lag blocks provide the appropriate phase-lead characteristic to compensate for the phase lag between the exciter input and the generator electrical torque. The output of PSS is limited to guarantee that PSS does not counteract voltage regulator action of AVR.

C. SVC and TCSC-Based Stabilizer

The complete SVC and TCSC controller structure with a lead-lag compensator are shown in Figures 3 and 4. The susceptance of SVC and B could be expressed as:

$$B_{SVC} = (K_s (B_{ref} - U_{SVC} - B_{ref}) / T_s$$

And, reactance of TCSC and X_{TCSC} are expressed as:

$$X_{TCSC} = k_x (X_{TCSC} - U_{TCSC} - X_{TCSC}) / T_s$$

Referring to Figure 1, the d and q components of the machine current i and terminal voltage V can be written as the Equations (7) and (8):

Figure 1. SMIB with PSS and FACTS devices

Figure 2. IEEE Type-ST1 excitation system with PSS
where the state vector $X = [\Delta \delta, \Delta \omega, \Delta E' q, \Delta E'' q]^T$, and the control vector U is $[U_{pss}, \Delta B, \Lambda X]^T$ and K_1 to K_6, K_{pB}, K_q, and K_e are linearization constant.

D. STATCOM-Based Stabilizers

As shown in Figure 1, the STATCOM consists of a three phase gate turn-off (GTO) - based voltage source converter (VSC) and a DC capacitor. The STATCOM model used in this study is founded well enough for the low frequency oscillation stability problem. The STATCOM is installed through a step-down transformer with a leakage reactance of X. The voltage difference across the reactance produces active and reactive power exchange between the STATCOM and the transmission network. The STATCOM resembles in many respects a synchronous compensator, but without the inertia.

The STATCOM is one of the important FACTS devices and can be used for damping electromechanical oscillations in a power system to provide stability improvement. This study examines the application of STATCOM for damping electromechanical oscillations in a power system. The VSC generates a controllable AC voltage source $V_{dc} \angle \psi$ behind the leakage reactance. The voltage difference between the STATCOM-bus AC voltage $V_d(t)$ and $V_f(t)$ produces active and reactive power exchange between the STATCOM and the power system, which can be controlled by adjusting the magnitude $CV_{dc} \angle \psi$ and the phase ψ. In Figure 1 [21]:

$$V_s = CV_{dc} \angle \psi = CV_{dc}(\cos \psi + j \sin \psi)$$

where $C = mk$, k is the ratio between the AC and DC voltage depending on the converter structure, m is the modulation ratio defined by pulse width modulation (PWM); V_{dc} is the DC voltage; and ψ is the phase defined by PWM. Furthermore, C_{dc} is the DC capacitor value and i_{dc} is the capacitor current while i_{ad} and i_{aq} are the d and q components of the FACTS current I_{dc}, respectively. Figure 5 illustrates the block diagram of STATCOM AC/DC voltage PI controller with a damping stabilizer. The proportional and integral gains are K_{ACP}, K_{ICP} and K_{DCI}, K_{ICP} for AC and DC voltages, respectively. The STATCOM damping stabilizers are lead-lag structure where K_C and K_e are the stabilizer gains, T_w is the washout time constant, and T_{1C}, T_{2C}, T_{3C}, T_{4C}, T_{1P}, T_{2P}, T_{3P}, and T_{4P} are the stabilizer time constants.

![Figure 5. STATCOM AC/DC Voltage Regulator with supplementary damping control in the AC control loop](image-url)
E. Linearizing Model STATCOM

In electromechanical mode damping stabilizers analysis, the linearized incremental model around a nominal operating point is usually employed [22, 23].

Using vector representation:

\[
\begin{bmatrix}
\Delta \delta \\
\Delta \omega \\
\Delta E_p \\
\Delta E_q \\
\Delta V_{DC}
\end{bmatrix} =
\begin{bmatrix}
-K_1 & 0 & -K_{pdc} & 0 & 0 \\
0 & -K_2 & 0 & -K_{qdc} & 0 \\
-K_{d1} & 0 & 0 & 0 & 1 \\
0 & K_{d1} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta \omega \\
\Delta E_p \\
\Delta E_q \\
\Delta V_{DC}
\end{bmatrix} +
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-K_{c1} & 0 & 0 & 0 & 0 \\
0 & K_{c1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & K_{sv}
\end{bmatrix}
\begin{bmatrix}
U_{PSS} \\
\Delta C \\
\Delta \psi
\end{bmatrix}
\]

(14)

Using vector representation:

\[P_{Ax} = A\Delta x + B\Delta u\]

(15)

where, the state vector \(X \) is \([\Delta \delta, \Delta \omega, \Delta E'_p, \Delta E'_q, \Delta V_{DC}]^T\), and the control vector \(U \) is \([U_{PSS}, \Delta C, \Delta \psi]^T\). The \(K_i \) to \(K_m \), \(K_p \), \(K_q \), \(K_r \), and \(K_N \) are linearization constant.

III. PROBLEM FORMULATION

A. Stabilizer Structure

The commonly used lead-lag structure is chosen in this study. The transfer function of the stabilizer is:

\[u = K \left(sT_w \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right) y\]

(16)

where \(u \) and \(y \) are the stabilizer output and input signals respectively, \(K \) is the stabilizer gain, \(T_w \) is the washout time constant, and \(T_1, T_2, T_3, \) and \(T_4 \) are the stabilizer time constants. From the viewpoint of the washout function, the value of \(T_w \) is not critical and may be in the range of 1-20 sec [23]. In the lead-lag structured controllers, the washout time constants \(T_w \) is usually prespecified [15, 24]. In the present study a washout time constant \(T_w = 10 \) sec is used. The controller gain \(K \) and time constants \(T_1, T_2, T_3, \) and \(T_4 \) are to be determined.

Furthermore, in the design of a robust damping controller, selection of the appropriate input signal is a main issue. Input signal must give correct control actions when a disturbance occurs in the power system. Both local and remote signals can be used as control. However, local control signals, although easy to get, may not contain the desired oscillation modes. For local input signals, line active power, line reactive power, line current magnitude and bus voltage magnitudes are all candidates to be considered in the selection of input signals for the FACTS power oscillation damping controller [25]. Similarly, generator rotor angle and speed deviation can be used as remote signals. However, rotor speed seems to be a better alternative as input signal for FACTS based controller [26]. The input signal of proposed damping stabilizers is speed deviation, \(\Delta \omega \).

B. Objective Function

A widely used conventional lead-lag structure for both PSS and FACTS-based stabilizers, shown in Figures 2, 3, 4 and 5, is considered. In this structure, the washout time constant \(T_w \) is usually prespecified. It is worth mentioning that the damping controller is designed to minimize the electromechanical mode oscillation while the internal PI controllers are designed to minimize the variations in ac and dc voltages of the STATCOM. Therefore, the following weighted-sum multiobjective function is proposed in order to coordinate among the damping stabilizers and the internal ac and dc PI controllers. Therefore, to increase the system damping to electromechanical modes, an objective function \(J \) defined below is proposed.

\[J = \int_{t_{sim}}^{t_{sim} + \Delta t} \left[\alpha |\Delta \omega| + |\Delta \psi| + \beta |\Delta V_{DC}| \right] dt\]

(17)

In the above equations \(t_{sim} \) is the simulation time, \(\alpha \) and \(\beta \) are weighting factors, \(\Delta \omega \) is the generator speed deviation, \(\Delta V_{DC} \) is the STATCOM AC voltage deviation, and \(\Delta \psi \) is the DC voltage deviation, where for SVC and TCSC weighting factors \(\alpha \) and \(\beta \) are zero. It is aimed to minimize this objective function in order to improve the system response in terms of the settling time and overshoots.

C. Optimization Problem

In this study, it is aimed to minimize the proposed objective function \(J \). The problem constraints are the PSS and FACTS controller parameter bounds. Therefore, the design problem can be formulated as the following optimization problem.

minimize \(J \)

subject to:

\[T_1 \min \leq T_1 \leq T_1 \max, \quad K_{ACP} \min \leq K_{ACP} \leq K_{ACP} \max\]

\[T_2 \min \leq T_2 \leq T_2 \max, \quad K_{ACP} \min \leq K_{ACP} \leq K_{ACP} \max\]

\[T_3 \min \leq T_3 \leq T_3 \max, \quad K_C \min \leq K_C \leq K_C \max\]

\[T_4 \min \leq T_4 \leq T_4 \max, \quad K_C \min \leq K_C \leq K_C \max\]

\[K_{PSS} \min \leq K_{PSS} \leq K_{PSS} \max, \quad K_C \min \leq K_C \leq K_C \max\]

\[K_{psi} \min \leq K_{psi} \leq K_{psi} \max\]

(18)

The proposed approach employs genetic algorithm [15] to solve this optimization problem and search for optimal set of the controller parameters. Based on the linearized power system model, Genetic Algorithm (GA) has been applied to the above optimization problem to search for optimal settings of the proposed stabilizer. In this study, PSS and FACTS-based damping controllers as discussed in the following combination cases:

Case 1: Without compensation (base case).

Case 2: Single and coordinated compensation Design Approach(PSS, SVC and TCSC).

Case 3: STATCOM internal AC and DC PI voltage controllers with PSS and C-based damping stabilizer.

Case 4: STATCOM internal AC and DC PI voltage controllers with PSS and \(\psi \)-based damping stabilizer.
IV. SIMULATION RESULTS

Simulations on the SMIB system, shown in Figure 1, are performed to evaluate the effectiveness of the PSS and FACTS controllers to damping power system oscillations and its design by the methods proposed using GA in the paper are demonstrated by example power systems.

The relevant parameters of the power system are given in Appendix. To validate the effectiveness of the proposed controllers, two different operating conditions (Normal and Heavy) as given in Table 1 are considered. The parameters for proposed stabilizers are given in Table 2.

Table 1. Loading conditions

<table>
<thead>
<tr>
<th>Loading</th>
<th>P_L (pu)</th>
<th>Q_L (pu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1.0</td>
<td>0.015</td>
</tr>
<tr>
<td>Heavy</td>
<td>1.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

A. Eigenvalues Analysis

The system eigenvalues and their damping ratios with and without PSS, SVC, TCSC and STATCOM (single and coordinated design) for nominal and heavy loading conditions are given in Tables 3, 4, 5 and 6, respectively. The eigenvalue analysis reveals the effectiveness of GA Based single and coordinated of PSS and FACTS -Based controllers to damping power system oscillations and power system stability Enhancement.

Table 2. Optimal parameter setting of the proposed stabilizers

<table>
<thead>
<tr>
<th>Controller optimal parameter</th>
<th>Single design</th>
<th>Coordinated design</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_based Stabilizer</td>
<td>PSS</td>
<td>SVC</td>
</tr>
<tr>
<td>T1</td>
<td>0.561</td>
<td>0.2801</td>
</tr>
<tr>
<td>T2</td>
<td>0.100</td>
<td>0.300</td>
</tr>
<tr>
<td>T3</td>
<td>0.2671</td>
<td>0.0124</td>
</tr>
<tr>
<td>T4</td>
<td>0.100</td>
<td>0.300</td>
</tr>
<tr>
<td>K</td>
<td>16.021</td>
<td>310</td>
</tr>
<tr>
<td>Ksc</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kosc</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kosc</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kosc</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 3. System eigenvalues in nominal loading condition, single and coordinated design

<table>
<thead>
<tr>
<th>No Control</th>
<th>PSS</th>
<th>SVC</th>
<th>TCSC</th>
<th>PSS & SVC</th>
<th>PSS & TCSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3±j4.96</td>
<td>-1.93±j5.55</td>
<td>-0.72±j5.98</td>
<td>-3.9±j4.601</td>
<td>-2.04±j1.74</td>
<td>-5.3±j1.9608</td>
</tr>
<tr>
<td>-10.39±j3.29</td>
<td>-4.21±j3.13</td>
<td>-3.15±j3.61</td>
<td>-2.78±j1.164</td>
<td>-7.39±j1.81</td>
<td>-12.4±j18.05</td>
</tr>
<tr>
<td>--</td>
<td>-0.204</td>
<td>-2.64±0.204</td>
<td>-6.96±0.209</td>
<td>-3.9±2.74; 0.22; -0.2</td>
<td>-0.267±0.222; -0.2</td>
</tr>
</tbody>
</table>

Table 4. System eigenvalues in heavy loading condition, single and coordinated design

<table>
<thead>
<tr>
<th>No Control</th>
<th>PSS</th>
<th>SVC</th>
<th>TCSC</th>
<th>PSS & SVC</th>
<th>PSS & TCSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49±j3.690</td>
<td>-1.02±j4.120</td>
<td>-0.53±j5.540</td>
<td>-3.74±j4.708</td>
<td>-3.21±j3.95</td>
<td>-5.26±j3.7900</td>
</tr>
<tr>
<td>-10.58±j3.69</td>
<td>-4.32±j3.97</td>
<td>-22.3±11.09</td>
<td>-19.02±10.36</td>
<td>-7.20±j2.850</td>
<td>-12.89±j18.21</td>
</tr>
<tr>
<td>--</td>
<td>-20.058</td>
<td>-9.02±3.71</td>
<td>-12.47±6.3</td>
<td>-2.60±j0.410</td>
<td>-14.1±10.0</td>
</tr>
<tr>
<td>--</td>
<td>-5.03±0.207</td>
<td>-1.74±0.27</td>
<td>-2.40±j2.269</td>
<td>-17.94±j14.77; 0.21; -0.2</td>
<td>-0.2672±j0.222; -0.2</td>
</tr>
</tbody>
</table>

Table 5. System eigenvalues in nominal (a) an heavy (b) loading conditions (STATCOM)

<table>
<thead>
<tr>
<th>System with STATCOM No POD Controller</th>
<th>C_based Stabilizer</th>
<th>ψ_based Stabilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0835±j2.6517</td>
<td>-1.14±j1.289</td>
<td>-3.07±j0.861</td>
</tr>
<tr>
<td>-1.7071</td>
<td>-5.04±j11.95</td>
<td>-3.38±j6.005</td>
</tr>
<tr>
<td>-6.8940</td>
<td>-13.44±j31.139</td>
<td>-13.21±j33.62</td>
</tr>
<tr>
<td>--</td>
<td>-3.467±10.4997</td>
<td>-0.202±j3.7671</td>
</tr>
<tr>
<td>--</td>
<td>-0.2062</td>
<td>-0.0337</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System with STATCOM No POD Controller</th>
<th>C_based Stabilizer</th>
<th>ψ_based Stabilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.7174±j1.854</td>
<td>-1.602±j2.501</td>
<td>-2.731±j2.304</td>
</tr>
<tr>
<td>-5.3029</td>
<td>-5.801±j23.395</td>
<td>-8.6±j17.840</td>
</tr>
<tr>
<td>-0.1540</td>
<td>-14.165±j31.864</td>
<td>-13.543±j33.543</td>
</tr>
<tr>
<td>--</td>
<td>-2.362±j6.084</td>
<td>-7.136±j10.005</td>
</tr>
<tr>
<td>--</td>
<td>-0.202</td>
<td>-0.0380</td>
</tr>
</tbody>
</table>

Table 6. Damping of system electromechanical mode in both of loading conditions, single and coordinated design

<table>
<thead>
<tr>
<th>Loading</th>
<th>No Control</th>
<th>PSS</th>
<th>SVC</th>
<th>TCSC</th>
<th>STATCOM</th>
<th>PSS & SVC</th>
<th>PSS & TCSC</th>
<th>C_based Stabilizer</th>
<th>ψ_based Stabilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>-0.060</td>
<td>0.4776</td>
<td>0.1995</td>
<td>0.646</td>
<td>0.3783</td>
<td>0.761</td>
<td>0.9384</td>
<td>0.6628</td>
<td>0.9628</td>
</tr>
<tr>
<td>Heavy</td>
<td>-0.131</td>
<td>0.3911</td>
<td>0.0968</td>
<td>0.622</td>
<td>0.308</td>
<td>0.630</td>
<td>0.8841</td>
<td>0.5393</td>
<td>0.7643</td>
</tr>
</tbody>
</table>
B. Non Linear Time Domain Simulation

To assess the effectiveness of the proposed PSS and FACTS devices to improve the stability of SMIB power system shown in Figure 1 is considered for nonlinear simulation studies. 6-cycle 3-φ fault on the infinite bus was created, at both loading conditions given in Table 1, to study the performance of the proposed controller. The system data is given in the Appendix. Figures 6, 7 and 8 show the rotor angle response with above mentioned disturbance at nominal and heavy loading conditions, respectively.

The response with coordinated design is much faster, with less overshoot and settling time compared to CPSS and single design. It can be observed from figures that, the coordinated design approach provides the best damping characteristic and enhance greatly the first swing stability at two loading conditions. Response when CPSS and designed individually and in coordinated manner at nominal and heavy loading conditions are compared and shown in Figures 9 and 10, respectively. It is clear that the control effort is greatly reduced with the coordinated design approach.

Figure 6. Machine speed response for a six cycles fault with nominal (a) and heavy (b) loading conditions

Figure 7. Machine rotor angle for a six cycles fault with nominal (a) an heavy (b) loading conditions

Figure 8. Machine speed response for a six cycles fault with nominal (a) and heavy (b) loading conditions
V. CONCLUSIONS

In this paper, power system stability enhancement by PSS and FACTS device are presented and discussed. Genetic Algorithms optimization technique employed to coordinately tune the parameters of the PSS and FACTS controller. The coordination between the PSS and the FACTS controller is taken into consideration to improve the damping power system oscillations. The electromechanical mode is more controllable through based stabilizers. The proposed stabilizers have been applied and tested on Single Machine Infinite Bus (SMIB) power system under severe disturbance and different loading conditions. Moreover the eigenvalue analysis and the nonlinear simulation results are used for small signal stability of SMIB system installed with PSS and SVC, TCSC and STATCOM. Finally, this analysis results reveal that TCSC based stabilizers is much better than SVC based stabilizers on the damping power system oscillations. Furthermore, coordinated design of PSS and STATCOM based controllers has significant performance to promote the damping power system oscillations compared with SVC and TCSC based controllers.

APPENDIX

Power system data in per unit value:

\[M = 9.26; \quad T_{do} = 7.76; \quad D = 0; \quad x = 0.973; \quad x_d = 0.19; \]
\[x_q = 0.55; \quad R = 0.234; \quad X = 0.997; \quad g = 0.249; \quad b = 0.262; \]
\[K_i = 1.0; \quad T_e = 0.05; \quad |E_{id}| \leq 7.3 \text{ pu}; \quad V_{dc} = 1; \quad K_d = 20; \]
\[T_d = 0.01. \]

REFERENCES

BIographies

Jamshed Barati was born in Baghmalek, Iran, in 1984. He received the B.Sc. and degree from Shahid Chamran University, Ahwaz, Iran in 2006 and M.Sc. degree from the same university, in 2009 in Electric Power Engineering. He is currently with Ramhormoz Branch, Islamic Azad University, Ramhormoz, Iran as a lecturer. His areas of research include power system dynamic stability, stability and control and FACTS devices.

Iman Orak was born in Izeh, Iran, in 1984. He received the B.Sc. degree from Shahid Chamran University, Ahwaz, Iran in 2006 and M.Sc. degree from the same university in 2009 in Electric Power Engineering. He is currently working with Izeh Branch, Islamic Azad University, Izeh, Iran. His areas of research include power system dynamic stability.

Hosein Hemati was born in Izeh, Iran, in 1986. He received the B.Sc. degree from Shahid Chamran University, Ahwaz, Iran in 2008 and M.Sc. degree from the same university Iran in 2010, in Electric Power Engineering. He is currently working with Izeh Branch, Islamic Azad University Izeh, Iran.