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Abstract- In this paper, by means of the variational 

principle we solve a problem of free oscillation of a 

medium-contacting longitudinally reinforced orthotropic 

cylindrical shell. Based on the Ostrogradsky-Hamilton 

variational principle, the frequency equation of 

oscillations of a medium-contacting, reinforced 

orthotropic cylindrical shell is constructed and 

numerically realized. The surface loads acting by the 

medium on a longitudinally reinforced cylindrical shell 

are determined from the solutions of the system of Lame 

equations in displacements.  

 

Keywords: Ribbed Shell, Variational Principle, 

Oscillations, Determinant, Boundary Conditions. 

 

I. INTRODUCTION 

In recent years the issues concerning the 

investigations of stress-strain state of medium-contacting 

ribbed anisotropic shells draw great attention of 

researchers. The papers [1, 2] were devoted to 

investigation of free oscillations of medium-filled 

isotropic cylindrical shells longitudinally reinforced and 

reinforced with cross system of ribs and loaded by axial 

compressive forces. By using the variational principle, 

the frequency equation of oscillations of a medium-

contacting reinforced isotropic cylindrical shell is 

constructed and numerically realized. The free 

oscillations of liquid-filled ribbed isotropic cylindrical 

shells under axial compression was considered in the 

paper [3].  

The shells were reinforced longitidinaly, laterally and 

by the cross system of ribs. The similar problem 

considered in [3], with regard to friction between the 

contract surface of the shell and medium was studied in 

the paper [4]. In [5] a problem of forced axially 

symmetric oscillations of a liquid-filled isotropic 

cylindrical shell reinforced and loaded by axial 

compressive forces was studied. 

 

 

II. PROBLEM STATEMENT 

It is known that among the different configuration 

shells the ribbed cylindrical shells are the most extended 

ones widely used as carrying structural elements. A 

ribbed shell is considered as a system consisting of the 

actual shell and longitudinal ribs rigidly connected with it 

along the contact lines. It is accepted that the stress-strain 

state of the sheathing may be completely determined 

within the linear theory of elastic thin shells based on 

Kirchhoff-Liave hypotheses, and for calculation of ribs 

the theory of curvilinear Kirchhoff-Klebsch bars are 

applicable.  

The system of coordinates were chosen so that the 

coordinate lines coincide with the lines of principal 

curvatures of the medium surface of the sheathing. It is 

assumed that the ribs are located along the coordinate 

lines, and their edges and the edges of the sheathing lie in 

the same coordinate plane.  

The strain state of the sheathing may be determined 

by three components of displacements of its median 

surface ,u   and w . The turning angle of normal 

elements 1 2,   with respect to coordinate lines y  and 

x  are expressed by w  and   with the help of 

dependences as: 

1

w

x



 


, 2

w

y R




 
   

 
 

where R  is the radius of median surface of the shell.  

For describing the strain state of the ribs, in addition 

to three components of displacements of gravity centers 

of their cross sections ( , ,i i iu w , respectively for the ith 

longitudinal bar) it is necessary to determine the torsion 

angle kpi . Taking into account that according to the 

accepted hypotenes it holds the constancy of radial 

flexures along the height of cross sections, and the 

equality of corresponding torsion angles following from 

the conditions of rigid junction of ribs with the shell, we 

write the following relations:  



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 21, Vol. 6, No. 4, Dec. 2014 

137 

     

     

   

 

   

1

2

1

2

, ,

, ,

,

,

,

i i i i

i i i i

i i

i i

kpi i

u x u x y h x y

x x y h x y

w x w x y

x y

x x y



  

 

 

 

 







 (1) 

where 
10.5 ,i ih h H h   is the shell thickness, 

1
iH  is the 

distance from the axes of the ith longitudinal bar to the 

shell surface, ix  and iy  are the coordinates of the lines of 

conjunction of ribs and the shell, ,i kpi   are the turning 

and torsion angles of cross sections of longitudinal bars. 

For external actions it is assumed that the surface 

loads acting on the ribbed shell may be reduced to the 

constituents ,x yq q  and zq  applied to the median surface 

of the shell, and the boundary loads to longitudinal, 

tangential, lateral forces and bending moments applied to 

the edges of the shell 1 1 1 1, , ,T S Q M  and ( 2 2 2 2, , ,T S Q M  

on curvilinear and rectilinear edges, respectively), and to 

appropriate forces, bending moments and torgues applied 

to end cross sections of the ribs ( 1, , , , ,i i i i i kpiT S Q M M M  

for longitudinal ribs).  

We get differential equations of motion and natural 

boundary conditions for a longitudinally reinforced 

orthotropic cylindrical shell on the basis of the 

Ostrogradsky-Hamilton variational principle. For that we 

write beforehand the potential and kinetic energy of the 

system.  

The potential energy of elastic deformation of a 

cylindrical shell has the form: 
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,   R  is the radius of the median 

surface of the shell,  h  is the shell thickness, , ,u w  are 

the components of displacements of the points of the 

medium surface of the shell. 

The expressions for the potential energy of elastic 

deformations of the ith longitudinal rib are as follows [7]: 

2
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 (3) 

In Equations (2) and (3) 1 2 1 2, , ,x x y y  are the 

coordinates of curvilinear and rectilinear edges of the 

shell: , , ,i zi yi kpiF J J J  are area and inertia moments of the 

cross section of the ith longitudinal bar, respectively, with 

respect to the axis zO  and the axis parallel to the axis yO  

and passing through the gravity center of the cross 

section, and also its inertia moment at torsion; ,i iE G  are 

elasticity and shear module of the material of the ith 

longitudinal bar, respectively.  

The potential energy of external surface and edge 

loads applied to the sheathing is determined as a work 

performed by this loads when taking the system from one 

deformed state to initial underformed state and is 

represented in the form:  

 

 

 

2 2

1 1

2
2

1

1

2
2

1

1

0

1 1 1 1 1

2 2 2 2 2

x y

x y z

x y

y
x x

x x
y

x
y y

y y
x

A q u q q w dxdy

T u S Q w M dy

S u T Q w M dx



 

 









    

    

   

 





 (4) 

In the similar way, the potential energies of external 

edge loads applied to the and faces respectively of the ith 

longitudinal bar, are determined by the following 

expressions (it accepted that only edge loads are applied 

to the ribs):  

 
2

1

1

x x

i i i i i i i i i i zi kpi kpi
x x

A T u S Q w M M M   



        (5)   

The total potential energy of the system equals the 

sum of potential energies of elastic deformations of the 

shell and longitudinal ribs, and also potential energies of 

all external loads:  

1 1

0 0
1 1

k k

i i
i i

A A
 

        (6) 

The kinetic energy of the shell and longitudinal ribs 

are written in the form of: 
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where t  is time coordinate, 0 , i   is the density of the 

material from which the shell is made, the ith longitudinal 

bar. The kinetic energy of the longitudinally reinforced 

shell is: 

1

0
1

k

i
i

K K K


   (8) 

The equations of the motion of the ribbed shell are 

obtained on the basis of Ostrogradsky-Hamilton’s 

principle of stationary action:  

0W   (9) 

where 

t

t

W Ldt





   is the Hamilton action, L K   is 

the Lagrange function, 't  and ''t  are the given arbitrary 

times. 

Assuming that the shell is reinforced by an infinitely 

great number of ribs, by limit passage 1k   and with 

respect to that variation and differentiation operations are 

permutation, Equation (9) may be reduced to the form:  
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The surface loads ,x yq q  and zq , acting by the 

medium on the longitudinally reinforced shell are 

determined from the solutions of the system: 
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where , ,x rs s s  are longitudinal, torsional and radial 

components of the displacement vector of the medium, 

respectively; ,s s   are the Lame coefficients for the 

medium; , ,x r   are longitudinal, normal and 

circumferential coordinates. 

The volumetric expansion   and rotation 

components , ,x r    are determined from the 

expressions:  
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 In its turn, by means of the functions , ,x rs s s  the 

stresses are expressed as 
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III. METHOD OF SOLUTION 

Assume that the contact between the shell and 

medium is sliding, i.e. for r R  

zw s  (13) 

0, 0,x rx r z rrq q q            (14)   

In what follows, the hingely supported shells are 

considered, i.e. for 0   and  1 1 1 /L R     the 

following boundary conditions are fulfilled: 

1 1

0

0

w

T M

  

 
 

We look for the components of the displacement vector 

of the points of median surface of the shell in the form of: 
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where , ,A B C  are unknown constants,    is a sought-for 

frequency. Using the solution of system (4), by displacing 

the points of the median surface of the shell (15) and 

contact conditions (13), (14), we can determine the 

contact pressure zq . We represent this expression in the 

form of:  
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where, in the case of small inertial actions of the medium 

on the oscillation process of the system, 
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When the inertial actions of the medium on the 

oscillation process of the system is significant, 
 0
zq  has 

the form of: 
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. 

where nI  is modified nth order Bessel function of first 

kind, k,n, ,e t   are wave numbers, 
2 2 2 ,e ek   * ,k kR

2 2 2
t tk   ,

* ,l l R  * ,t t R  * ,t t R  *
l l R  . 

Completing the equations of motion of the shell (10), 

medium (11) by contact conditions (13), (14) we arrive at 

a contact problem on oscillations of the medium-filled 

shell reinforced with longitudinal ribs. In other words, a 

problem of oscillations of an orthotropic shell with 

medium and reinforced with longitudinal ribs is reduced 

to joint integration of equations of theory of shells, medium 

subject to indicated conditions on their contact surface.  

 

IV. RESULTS AND CONCLUSIONS 

For finding the approximate expressions of 
(0)
zq , we 

will use asymptotic formulas for logarithmic derivative of 

the Bessel function nI  ( ; 1) :x n n    

( )

( ) 2

n

n

I x n x

I x x n


    (18)                                                       

Using formulas (16), (17) and (18) for 
(0)
zq  we find: 

in the case of small inertial actions of the medium on 

oscillations process of the system.  

 0 *
z sq nE  (19)

 and when the inertial actions of the medium on the 

oscillations process of the system are significant. 

 
*

0 * 2 s
z sq nE

n


     (20) 

where in (19) and (20): 

 

2
* 12 21

2
* 00

*
*

1212 *

1
, , ,

2 1

, 1

s
s

s

s s
s

h

E h E
E h

GG h R

  
  

 


  



 

   

After substitution of (15) and (19) in (10), we get a 

homogeneous system of linear algebraic equations that 

contains , , ,A B C  as unknowns, and whose nontrivial 

solution is possible only in the case when its determinant 

equals zero:  

 det 0 , 1,2,3ijb i j   (21) 
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where,  

    
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1 *2 2 *
11 1 1 12 12

1* *3 * 2
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2
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In the open form, equation (21) has the form:  
3 2

1 2 3 0          (22) 

where,  
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When the inertial actions of the medium on the 

oscillations process of the system are significant, the 

equation with respect to   takes the form:  
3 2

1 2 3 0          (23)
 

where , 

 

   

1
*

1 1 1

* 2 *
11 1 1 1 33 2 1 1

2 / .

. 2 / 2 / ;

s

s s

n

b n b a n n

   

      


  
 

    
 

 

 
  

1
*

2 1 1

1 22 *4 2 *2 2 2
2 33 12 1 2 11 33

2 / .

.

s

c

n

a n b k a k n a b b

   

 


  
 

     


 

    

 

22 * * 2 *2
2 11 1 1 12

1
2 *

3 1 1 1 3

2 / 2 / 1 ;

2 /

s s

s

a n b n n a n k

n

   

     


    

  
 

 

Solving equation (22) in the domain of real numbers, we 

find 

2 3 2 3
13 3

2 4 27 2 4 27 3

q q p q q p 
           (24) 

2 3
1 1 1 2

2 3

2
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3 27 3
p q

   
       

Replacing in (24) 1 2 3, ,    by 1 2 3, ,   , 

respectively, we can find a real root of Equation (23). The 

numerical values of   are found. For the problem 

parameters were accepted:  

0.16 m;R   0.00045 m;h   2 0.19;   1 0.11;   

1 0.8 m;L  10.1375 10 ;ch R   3
0 7800 kq/m ;c    

96.67 10 ;cE a    32800 kq/m ;s   8;m   

6

3
0.8289 10 ;

2

yiJ

R h

   6

3
0.13 10 ;

2

ziJ

R h

   

6

3
0.5305 10

2

kpiJ

R h

   

The dependence of the frequency parameter on wave 

formation n  in the circumferential direction found from 

equations (22) and (23) be means of (24) are depicted in 

Figure 1.  

 

 
 

Figure 1. Dependence of the frequency parameter on wave formation n  
in the circumferential direction 

 

 
 

Figure 2. Dependence of the frequency parameter on the amount of 

longitudinal ribs 
 

The values of a frequency parameter for a medium 

where the inertial properties are not taken into account 

correspond to the solid curve. The dashed line 

corresponds to the case when inertial properties are taken 

into account. Computations shows that both in an 

isotropic shell [1-5] and for a orthotropic shell, account of 

inertial properties of the medium reduces to decrease of 

the values of the frequency parameter  , the growth of 

the parameter 1

2

E

E
 
 

 
 

 to increase.  
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Dependence of the frequency parameter on the 

amount of longitudinal ribs for different values of   is 

depicted in Figure 2. It is seen that with the increase in 

the amount of longitudinal ribs the frequency parameter 

of the oscillations of the constructions under investigation 

al first increases, and then begins to decrease. The latter 

is connected with the fact that with increasing the amount 

of longitudinal ribs, the influence of their inertial 

properties on the oscillations process is significant. 

Furthermore, with the strengthening of the anisotropy 

property of the shell’s material, the frequency parameter 

of the oscillations of the studied constructions increases. 
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