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Abstract- In this paper by means of the variational 

principle in the geometric nonlinear statement a problem 

on longitudinally strengthened, orthotropic cylindrical 

shell contacting with external visco-elastic medium and 

located under the internal pressure, is solved. Amplitude-

frequency dependences of parametric vibrations of a 

strengthened, viscoelastic medium-filled cylindrical shell 

were constructed. 
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I. INTRODUCTION 

In recent times, investigation of stress-strain state of 

ridge anisotropic shells under the action of dynamical 

loads draws great attention of researchers. The monograph 

[1] was devoted to studies of deformation of cylindrical 

shells under the action of various dynamical loads. 

A few of papers [2-5] have been devoted to nonlinear 

vibrations of ridge cylindrical shells. In the paper [2], the 

successive approximations method, in [4, 5] the finite 

elements method were used. In geometrically nonlinear 

statement, by using the variational principle, nonlinear 

parametric vibrations of an external viscoelastic medium-

contacting, strengthened cylindrical shell situated under 

internal pressure were studied in [6-12]. Therewith the 

shells were strengthened with longitudinal, lateral and 

cross system of ribs. Investigations were conducted both 

without regard to lateral shift of shells [6-8] and with 

considering them [9-12].  

Under parametric vibrations we understand vibrations 

that occur under the action of a force changed as a time 

parameters. Such loads are called parametric [14]. 

 

II. PROBLEM STATEMENT 

We get differential equations of motion and natural 

boundary conditions for a longitudinally strengthened 

orthotropic, medium-contacting cylindrical shell on the 

basis of Ostrogradskii-Hamilton’s variational principle.  

For using Ostrogradskii-Hamilton’s principle we a 

priori write total energy of the system. For orthotropic 

cylindrical shell, the potential energy is [2]: 
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66 12B G G  , R  is the radius of the shell’s median 

surface, h  is the shell’s thickness, , ,u v w  are the 

components of displacements of the median surface points 

of the shell. The expressions for potential energy of elastic 

deformation of the ith longitudinal rib are as follows [13]: 
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In Equation  (2) 1 2,x x  are the coordinates of edges of 

the shell; , , ,i zi yi kpiF J J J are the area and inertia 

moments of the cross section of the  ith longitudinal bar 

with respect to oz axis and the axis parallel to oy axis and 

passing through the gravity center, and also its inertia 
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are the components of displacements of the points of the 
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The potential energy of the shell, under the action of all 

loads applied to the shell is determined as a work, and is 

represented in the form:  
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where, , ,x y zq q q  are the components of external loads, 

moreover 1 2z z zq q q   where 1zq  is the load intensity 

acting on the shell from visco-elastic filler, 2zq  is the 

intensity of external surface loads, 1 1 1 1, , ,T S Q M  and

2 2 2 2, , ,T S Q M  are internal forces and moments in shell. 

The potential energy of the ith longitudinal bar, are 

similarly determined by the following expressions (it is 

accepted that only edge loads are applied to ribs): 
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where, 1, , , , ,i i i i i kpiT S Q M M M  are internal forces and 

moments in ribs.   

The total potential energy of construction is equal to: 
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Kinetic energies of the shell and ribs are written as follows: 
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where, t  is a time coordinate, 0 , i   are densities of 

materials from which the shell and ith longitudinal bar 

were made. 

The kinetic energy of the ribbed shell is determined as: 
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From the condition for continuity of strain, we have the 

following relations between displacement and torsion 

angles: 
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distance from the axes of the ith longitudinal bar to the 

surface of the shell;  , ix y  are the coordinates of the 

conjunction lines of ribs with the shell; 1  and 2  are 

turning angles of normal elements with respect to 
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longitudinal bars.  

The equations of motion of a strengthened, orthotropic, 

medium-contacting shell are obtained based on 

Ostrogradskii-Hamilton’s action stationarity principle: 
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   is Hamilton’s action L K   is 

Lagrange’s function, 't  and ''t  are given arbitrary times.                                                 

The load intensity acting on the shell from the elastic 

filler may be written in the form: 
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where, the coefficient ck is determined by the dependence 
2

1 0ck q q    (Pasternak’s model), where 2  is 

Laplace’s two-dimensional operator on the contact 

surface, w  is the shell flexure, 0 1,q q  are constants
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   . Allowing for Equation (9) we 

express the displacement of bars by displacement of the 

shell. From the stationarity principle (10) we get a system 

of algebraic and differential equations with respect to 

sought-for unknowns. 
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III. PROBLEM SOLUTION 

On an example we consider nonlinear parametric 

vibrations of a longitudinally strengthened annular 

orthotropic shell under the action of loads

2 0 0 1sinzq q q t  , where 0q  is the mean or main load, 

1q  is rangeability of the load, 1  is the frequency of 

pressure change of the shell situated in visco-elastic 

medium. Assuming that the shell’s edges are hingely 

supported, i.e. for 0x   and ,x l  0,xN   0,xM 

0,w   and 0  . 

Consider the problem solution in a first approximation 

and with respect to both coordinate and time functions. 

The boundary conditions are fulfilled exactly if we assume  
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where, m  is the number of waves in peripheral direction;

0 0 0, ,u w  are unknown amplitudes of sought-for 

quantities , , ;
n

u w k
l


  , where n is the number of half-

waves in longitudinal   direction. Substitute approximation 

(12) in functional L  and taking into account that 1 0x  , 

2x l , 1 0y  , 2 2y  , ' 0t  , ''t



 , integrate with 
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In the second stage of the solution we integrate the 

system of Equations (14). Give the solution in a first 

approximation and with respect to time function, assuming 

that the vibrations are harmonic. Represent the solutions of 

the system of Equations (14) in the form  
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where, , ,A B C  are dimensionaless amplitudes,   are 

vibrations frequency. We conduct the further investigation 

with respect to time function by means of the Bubnov-

Galerkin method. Then we obtain the system of nonlinear 

algebraic equations. This system was solved numerically 

for data given below:  
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Figure 1. Amplitude-frequency dependences in the case of parametric 

vibrations of a strengthened, viscoelastic medium-filled cylindrical shell 
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The results of calculations are given in Figure 1. 

Amplitude-frequency curves in the case of considered 

vibrations of a strengthened orthotropic shell with a filler 

for different values of  ratio 1 2/E E  were given in this 

figure. The solid lines point out stable branches of curves, 

the dotted lines point out unstable ones. It is seen that by 

decreasing the ratio 1 2/E E , the amplitude of considered 

vibrations of a strengthened orthotropic shell with a filler 

increases. 
Consider the refined solution of the problem by 

approximating the curved surface of the shell by means of 
some parameters. Such a solution enables to follow the 
change of the form of the curved surface in time.  

Represent the function       ,u t t w t  in the form of 

series satisfying the above given boundary conditions: 
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Applying the Ostrogradskii-Hamilton principle, we get 

six equations of motion  
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The system of Equations (17) was integrated by the 

Runge-Kutta method. The initial deviation was given in 

the form of sinusoids in both directions, i.e. for 0t  , 

0u A , 0 0
du

dt
 , 1 0u  , 1 0

du

dt
 , 0 B  , 0 0

d

dt


 , 

1 0  , 1 0
d

dt


 , 0w C , 0 0

dw

dt
 , 1 0w  , 1 0

dw

dt
 . 

Then, integrating the system (17), we find the values of 

1 1 1, ,u w . The time step is chosen so that the stability of 

the solution of the system of Equations (17) is provided.  

Then, the calculations are repeated and

     1 1 12 , 2 , 2u t t w t    are found by integrating the 

system, and so on. The values      , ,u t t w t  at arbitrary 

point of the shell are calculated for the given time by 

Equation (16). 

Dependence of the flexure in central section of the shell 

on dimensionless variable 0/t T  , where 0T  is the 

period of the main tone of small vibrations of the 

strengthened cylindrical shell with a filler, at different 

initial deviations is given in Figure 2. For 1A  , the shell’s 

vibrations are harmonic, while the form of the curved 

surface remains initial.  

The obtained solution practically coincides with the 

solution in a first approximation. If the initial deviation 

exceeds the shell thickness, then the vibrations sharply 

differ from pure harmonic ones. Therewith the form of 

vibrations also at some times differ from the semiwave of 

the sinusoid, obtained for amplitude 3A  . It should be 

noted that growth of vibrations period in comparison with 

a first approximation is observed. 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Time variation of flexure in median section of a visco-elastic 

medium-filled shell under different initial deviations 
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