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Abstract- The non-homogeneity of a cylindrical shell in 
thickness may be taken into account by two different 
methods by introducing sandwich and non-homogeneity 
function. In this paper the inhomogeneity was taken 
into account by accepting the Young modulus and the 
density of the material as a function of coordinate 

changing in thickness. 
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I. INTRODUCTION                                                                         

Investigation of strength characteristics of medium-
contacting constructions and structural elements 
subjected to the action of external force with regard to 
nonhomogeneity of distribution of material, influence of 
medium and compressive force is of great importance.  

Parametric vibrations of uniform cylindrical shells 

with regard to nonhomogeneity in thickness were studied 
in the papers [1-4]. Using the variational principle in 
solving the problem, for finding vibration frequencies of 
the considered system a frequency equation was 
structured and studied depending on physico-geometrical 
parameters characterizing the system, the characteristic 

curves were constructed on the force-frequency plane.   
In this papers [5-7], for studying free and forced 

vibrations of a fluid-filled cylindrical shell stiffened with 
bars and subjected to the action of compressive force in 
the axial direction, physical mathematical model was 

constructed. For the cases of axially symmetric and 
asymmetric cases of vibrations, the frequency equation of 
the system was structured and approximate roots were 
found. The influence of geometrical, physical-mechanical 
parameters characterizing the system on the found 
frequencies were studied.  

At the same time, the forced vibrations of the system 
were considered, displacements of the cylinder in 
resonance frequencies and near it, were calculated. By 
introducing optimization parameters, the optimal variant 
of geometrical sizes of the cylindrical shell and the 
number of bars were found. In the paper, natural 

vibrations of the system of cylindrical shell, continuum 
stiffened with non-homogeneous rings and subjected to 
the action of compressive force are studied.  

The non-homogeneity of a cylindrical shell in 

thickness may be taken into account by two different 

methods by introducing sandwich [1] and non-

homogeneity function. In the paper the inhomogeneity 

was taken into account by accepting the Young 

modulus and the density of the material as a function 

of coordinate changing in thickness.  

 

II. PROBLEM STATEMENT 

For taking into account the nonhomogeity of the 

cylindrical shell in thickness, we will use a three-

dimensional functional. In this case, the total energy of 

the cylindrical shell is as follows: 
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The nonhomogeneity is taken into account by 

different methods. One of them is to accept the Young 

modulus and the density of the material as a function of 

coordinate changing in thickness [1]:  E E z , 

 .z   We assume that the Poisson ratio is constant. 

In this case stress-strain relations are written as follows: 
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Taking into account relations (2) and (3), and equality 
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in Equation (1), we can write: 
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 Let us write the total energy of the rings: 
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The influence of medium on the cylindrical shell is 

replaced by external forces , ,x y zq q q . The work done by 

these forces in displacements of points of the shell is 
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 Let us write potential energy generated in the shell 

and bar because of influence of compressive stresses x : 

1 11
2 22

10 0 0
2 2

i

k
x x c

i

h Fw w
d d d

R

 

 

 
  

 


    
      

    
     (7) 

The total energy of the considered system will consist of 

the sum 
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are modulus of elasticity of the cylindrical shell’s 

material and the Poisson ratio, respectively, ,R h  are radii 

and thickness of the cylindrical shell, iE  is the modulus 

of elasticity of longitudinal bar, iF  is the area of cross 

section of the longitudinal bar, iG  is the elasticity 

modulus of the longitudinal bar in shear, ,yi kpiI I  are 
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bar, 1k  is the amount of longitudinal bars, , ,x y zq q q  are 

the components of pressure force influencing on the 

cylindrical shell as viewed from medium, and
.
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It is considered that the rigid contact conditions 

between the shell and rings are satisfied: 
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The system of motion equations of the medium in 

cylindrical coordinates are written as follows [8]: 
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Volume extension   and , ,x r    component are 

calculated by the following expressions: 
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The stresses generated in medium are expressed by 

displacements , ,x rs s s  as follows:  
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When studying the vibrations of medium and a visco-

elastic cylindrical shell stiffened with bars we will 

consider two cases: a) the inertial influence of medium on 

vibration process is weak; b) in studying the vibration 

process inertial influence of medium may not be ignored.       
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The system of motion equations of medium (10) is 

complemented by contact conditions. We will assume 

that in the deformation process, the tangential surfaces of 

the cylindrical shell and medium shift with respect to 

another one but are not separated. In this case at the 
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should be satisfied. 
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from the medium may be determined by means of the 

obtained expressions. As a result, the solution of the 

stated problem is reduced to joint integration of total 

energy (8) of the construction consisting of medium-filled 

cylindrical shell stiffened with discretely distributed rings 

within the boundary conditions (14) and (15) of the 

system of motion Equations (10) of the medium.  

 

III. PROBLEM SOLUTION 

Represent the expressions of pressure components 
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As the system (18) is homogeneous, for the existence 

of its nonzero solution, the principal determinant should 

be equal to zero. As a result, we get the frequency 

equation: 

det 0  ,   , 1,18ija i j   (19) 

Equation (19) was studied by numerical method. The 

following values were taken for the parameters of 
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Figure 1. Dependence of frequency 1  on compressive force x  

 

 
Figure 2. Dependence of the frequency 1  on the amount of rings 

 

 Two cases of inhomogeneity functions were 

considered as linear  
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and parabolic  

 
2

0 1
z

E z E
h


  

   
   

,  
2

0 1
z

z
h

  
  

   
   

.  

where, the Young modulus is   nonhomogeneity 

parameter. Note that in the case of linear function  

1,  , in the case of parabolic principle   is any 

number, and 
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IV. CONCLUTIONS 

The result of calculations was given in Figure 1 in the 

form of dependence of frequency parameter on 

compressive stress, in Figure 2 in the form of dependence 

of frequency parameter on the amount of rings. The line 

of nonhomogeneity laws corresponds to curves 1, 

parabolic change cases of nonhomogeneity laws 

correspond to curves 2. The calculations show that the 

number of vibration frequencies corresponding to linear 

case of inhomogeneity laws is greater than the number of 

vibration frequencies corresponding to the case of 

parabolic change. As is seen from Figure 1, as the value 

of compressive stress increases frequency of vibrations 

decreases and tends to zero. As is seen from Figure 2, the 

frequency of natural vibrations of the system at first 

increases and gets maximum value and again decreases. 

This is explained by the fact that as the number of rings 

increases, the mass also increases and inertial influence to 

the vibration process of the system amplifies. 
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