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Abstract- Inductance gradient is one of the most 

important parameters in designing and manufacturing of 

railguns. A better performance can be achieved as the 

inductance gradient increases. In this paper a railgun with 

laminated and beveled rails is proposed to improve the 

inductance gradient. Then, it is applied on a typical 

railgun by using a 3-D Finite Element (FE) simulation. 

According to the FE analysis results, although it 

introduces a notable increase on the inductance gradient 

but it deteriorates the distribution of the current density in 

the armature. This problem is also solved by using 

laminated armature. The validity of the proposed method 

is verified by simulation.    

 

Keywords: Inductance Gradient, Current Density, 

Beveled Rail, Laminated Armature. 

 

I. INTRODUCTION                                                                         

Nowadays, due to the acceleration of technological 

and scientific advances, scientist required to design and 

use advanced technological application in technology and 

electro mechanism [1]. Some special equipment used for 

special applications. But to better performance need to 

more specialized study on it. One of this exceptional 

equipment that gets a lot of attention today is railgun. It is 

a launcher that can be used for different applications. The 

device uses electromagnetic force to launch. The force on 

the projectile and consequently the muzzle speed in a 

railgun increases with inductance gradient. Therefore, the 

attempt to maximize this parameter is one of the main 

goals in the design and manufacturing of railguns. The 

simplest form of force equation on the projectile in a 

railgun can be written as: 

21

2
proj rF L I  (1) 

where, L' is the inductance gradient the rail/armature 

combination along the rails, Ir is the driving current, and 

Fproj is the armature and projectile force.  

This equation is obtained from the virtual work 
method which is based on the conservation of energy. It 
is extracted by partially differentiating of the stored 

energy in the magnetic field, and also assuming that the 
entire developed mechanical energy is delivered to the 
projectile. In practice some of the magnetic energy is 
converted into strain energy in the structure and it is not 

taken into account in the simplest form of force Equation 
(1). In addition, it assumes a steady current distribution in 
the rails, independent of the projectile position and 
movement. Some limitations of (1) are described in [6]. 

Eddy currents are practically generated in different 
parts of current carrying parts of the rails as a result of the 

movement of the projectile and the diffusion of the 
magnetic field which results in a drag force exerted on 
the projectile [8]. Eddy currents are mostly located in the 
rails near the contact [3]. 

By providing the magnetic fields and currents at the 
armature, the inductance gradient L' can be calculated and 

then the mechanical forces in the railgun and its electrical 
performance with reasonable accuracy can be predicted. 
This information allows the railgun designers. To 
perform relatively rapid tradeoff assessments for 
proposed launcher designs. One of the main objectives to 
give a precise computation of the inductance gradient is 

geometric parameters of the railgun. 
In some cases, the number of rails is increased in 

order to increase the inductance gradient [4, 5]. However, 
the complication of the system and also the mechanical 
stress on the rails restrict the application of this 
technique. In the meantime, the high local current density 

may lead to local hot points and melt the armature. A 
uniform current distribution is required to prevent this 
damage on the armature [2]. 

This paper aims to propose an assembly of conductors 
to form a graded laminated armature and rail to obtain the 
maximum inductance gradient and at the same time a 

uniform current density in the armature. The construction 
of the proposed railgun is shown in Figure 1(a) and 1(b) 
in which Figure 1(a) shows the distribution of the current 
density in the ordinary railgun and Figure 1(b) gives that 
in a suitable assembled rail and armature with graded 
laminations. This is achieved by selecting different 

electrical conductivities for individual laminations in both 
rails and armature parts. 
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II. FINITE-ELEMENT MODEL 

The finite-element method is used to calculate the 

inductance gradient of railgun and distribution of the 

current density in the armature and the rails. 

 

 
                                       (a)                                                        (b) 

 

Figure 1. Current distribution in the right-half model of a railgun;  

(a) In the ordinary armature, (b) In the beveled rail and laminated 
armature and rail 

 

The magnetic vector potential A and electric potential 

V are employed in the conduction area and only A in the 

non-conduction area. The velocity effect is neglected in 

the modeling. The current density distribution can found 

using steady-state solutions of the Maxwell equations. 

The electrical contact resistances between the armature 

and rails are assumed to be negligible during acceleration.  

Furthermore, bias currents are ignored, and the 

magnetic permeability of the medium is set equal to the 

magnetic permeability of vacuum (μ0). Using these 

assumptions from Maxwell equations, a system of 

equations for the vector and scalar potentials (A, φ) is 

obtained, which, for the region of conductors (armature 

and rails), can be written as follows: 

 2

0

1
j A A 


         (2) 

   0j A         (3) 

In the surrounding non-conducting space, where the 

current density 0j  , Equation (2) can be expressed as 

2 0A   (4) 

The electromagnetic part of the problem, in fact, 

contains one boundary condition, which requires that the 

components of the vector potential vanish at an infinite 

boundary. At all inner boundaries between the conductors 

and the surrounding non-conducting space, the continuity 

conditions for the vector-potential components and their 

derivatives are satisfied. As the model is symmetrical, 

only a quarter of it needs to be analyzed. A three-layer 

rail and armature model is adopted in the model. The 

finite-element meshes of the graded laminated armature 

and beveled and laminated rail with a quarter of the 

practical model are given in Figure 2. 

 
(a) 

 
(b) 

 

Figure 2. (a) Meshes of laminated armature with beveled and laminated 

rail, (b) front view of railgun 

 

III. SIMULATION AND RESULTS 

In order to compare the inductance gradient and 

distribution of the current density in the reference railgun 

and proposed railgun, the reference railgun is simulated 

first. In this study, the reference is assumed as a simple 

railgun. The rails are 5×20 mm with a caliber of      

10×20 mm. The rails are made of copper and the 

projectile is made of aluminum. 

At a constant current of 80 kA, the inductance 

gradient and maximum current density of rails and 

armature are calculated using commercial software. The 

distribution of the current density on the rail and armature 

is shown in Figure 3. The calculated values for the 

inductance gradient and the maximum current density of 

armature are 0.516 H and 3.75×109 A/m2, respectively. 

At the next step, the rails are beveled and laminated 

aiming to improve the inductance gradient. The resistivity 

combination of the constructing materials of the three-

layer graded laminated rails and their widths are 

presented in Table 1. 

The calculated results show the increase on both the 

inductance gradient and the maximum current density to 

0.572 H and 3.81×109 A/m2, respectively. This means 

beveling and laminating of the rails introduces a notable 

increase on the inductance gradient but it deteriorates the 

distribution of the current density in the armature. This 

problem is also solved by using laminated armature. 

Using a three-layer graded laminated armature, the 

maximum current density in the armature drops to  

1.98×109 A/m2, showing a significant reduction of almost 

50%. This also introduces a better distribution of the 

current density in the armature. The resistivity 

combination of the constructing materials of the three-

layer graded laminated armature and their lengths are 

presented in Table 2. 
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The corresponding calculation results of the current 

density distribution on the rail and armature are shown in 

Figurer 4. The distribution of current density vs. distance 

along the movement on the armature for two 

aforementioned models is also shown in Figure 5. 

 

IV. CONCLUSIONS 

Inductance gradient and distribution of the current 

density in a railgun with beveled and laminated rails and 

laminated armature are calculated. It is shown that a good 

improvement in the inductance gradient can be obtained 

in case of the beveled and laminated rails. However, it 

deteriorates the current distribution in the armature. This 

problem is solved by using a graded laminated armature, 

where a uniform current density distribution can be 

achieved. In this case, the materials of the armature and 

the rail layers are so selected that the inner layer of the 

rails and at the same time the front layer of the armature 

have the largest conductivity. The conductivities of 

following layers, both in the rails and the armature are 

reduced from one layer to the other in predetermined step 

sizes as demonstrated in the paper. Validity of the 

proposed method is verified by using finite element 

method. 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Distribution of the current density on the reference Railgun 
and (b) Alone armature 

 

Table 1. Resistivity and width of each layer for three-layer beveled rail 
 

Rail layers Inside layer Middle layer Outside layer 

Resistivity (Ω.m)  2.6×10-8 4.6×10-8 5.6×10-8 

Width (mm)  1.7 1.7 1.6 

 
 

Table 2. Resistivity and length of each layer for three-layer armatures 
 

Armature layers in 

move direction 
Rear layer Middle layer Front layer 

Resistivity (Ω.m)  5.6×10-8 2.6×10-8 1.6×10-8 

Length (mm)  2 2 4 

 

 
(a) 

 
(b) 

 

Figure 4. (a) Distribution of the current density on the laminated and 

beveled railgun and (b) Alone armature 

 

 
 

Figure 5. The distribution of current density vs. distance along the 
movement on the armature 
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