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Abstract- It is known that the effects of non-conductivity 

substantially complicate the research and are most fully 

manifested when considering waves arising from the 

impact of shock and vibration loads [1]. These are liquids 

with bubbles. Knowledge of the regularities of the 

processes occurring in such continuous environ is of great 

importance for the creation of scientific bases for 

mathematical analysis. In this regard, the pulsed motion of 

two-phase adhesive fluid bubble enclosed in a viscous 

stretch tube is investigated. It is assumed that the cylinder 

is tightly connected to the environment. In the case of a 

limited length, the pressure is applied at one end of it. 

Therefore, these well-known and obvious works of this 

kind are generalized and developed. In a numerical 

experiment, we consider an infinite half-pipe with a flow 

of two-phase current flow: glycerin, water and oil 

containing small admixtures of air bubbles, respectively. 
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I. INTRODUCTION 

The wave propagation phenomenon is very popular in 

the unstable tray with fluid flow in the cavity. Due to the 

problems of this type, it should be encouraged to consider 

the equivalent, given the fluid movement in it. A suitable 

one-dimensional approximation is expected when the pipe 

length is much larger than its radius. Such an 

approximation essentially describes the properties of 

“liquid coating”. So far, the sum of such a problem, the 

dynamics of all flows is well developed. However, the 

mechanism of the phenomenon observed in relation to the 

two phase fluid in the chamber, due to the density, 

viscosity and tube orthosis, is not well understood. 

The interest in fluid dynamics problems in the pipe 

alteration process has been given to the importance of 

using the research results to problems in the calculation of 

hydraulic systems in the fields of aviation, oil and gas, 

chemical technology and thermal dynamics [3]. Liquid and 

structural problems (FSIs) are generated by 

turbomachinery and industrial water pipeline explosion 

systems. 

This often includes gas bubbles that greatly change the 
fluid dynamics [4]. The dynamic loading of fluid-filled 
flexible pipes was greatly considered as a problem, the FSI 
model was studied. 

 
II. BASIC RELATIONS OF THE PROBLEM 

Closed system of equations consists of hydro equations 
of fluid motion and tubes, as well as the equations 
components’ velocity continuity on the border of the 
interface of the liquid and tube. 

Biphasic mediums consisting of a mixture of liquid with 
tiny bubbles of gas are very important example of the 
relaxing environment. Experimental and theoretical 
studies have shown that when solving the problem of 
transporting of the two-phase liquid-gas flows, it should be 
kept in mind that such environments are different from 

other two-phase media [5]. The difference is that the heat 
of the carrier phase is much higher than the heat capacity of 
the dispersed phase due to the prevailing mass content of 
the carrier phase in the volume unit.   

Therefore, the liquid can be regarded as a thermostat 
with constant temperature. Methods of continuum 

mechanics have been used in the basis of the theory used 
to describe the flows of bubbly mixtures. We establish the 
following hypotheses and assumptions that greatly simplify 
the formulation and solution of the problem, without 
altering the essence of the phenomenon: 

 Bubbles are present in the form of spherical inclusions of 

the same radius 0r  
in every elementary macro-volume. 

Furthermore, the volume of concentration of bubbles 20   

is low (a mixture of mono - disperse) and the value 0r  is 

much smaller than the characteristic size of the problem; 

 Direct interaction and collision of bubbles with each 
other can be ignored; 

 Merge processes (coagulation), fragmentation and 
formation of new bubbles are absent; 
 Velocity of the bubbles and carrier phases are the same; 
 Bubbles have neutral buoyancy, i.e., do not settle down 
and do not float up;  
 Viscosity of the carrier phase is much greater than the 

viscosity of the gas bubbles (such as the viscosity of water 
is 10 times greater than the viscosity of air) and, therefore 
the viscosity of the mixture practically does not depend on 
the volume fraction of bubbles. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 31, Vol. 9, No. 2, Jun. 2017 

50 

III. THEORETICAL BACKGROUND 

Within the given assumptions the hydrodynamic 

equations consist of the impulse equation 
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The equations of continuity [2] 
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and rheological equations of the mixture [1] 
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In Equations (1)-(3),  txu ,  is the rate of mixture flow, 

 txp ,  is a hydrodynamic pressure and  tx,  is density of 

the mixture.  
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The volume viscosity   is the dynamic viscosity of 

the carrier phase, 20  is the volume content of bubbles, 

10 , 20  are the densities of the carrier and dispersed 

phase, respectively and 0p  is given static pressure. 

Subscript 0 indicates the value at the equilibrium phase. It 

should be noted that in the linear formulation the 

equilibrium 20  is used instead of the current volume 

concentration 2 , and this approach implies the presence 

of bubbles 20( 0)  . If the volume fraction of bubbles is 

sufficiently low 20( 1)  , then the medium can be 

considered as homogeneous. Specifics of such fluid is that 

when 1020   , then 
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(7) 

 

IV. EQUATION OF MOTION OF THE TUBE 

Suppose there is a cylindrical directly axis tube of radius 

R  and thickness h  in the unperturbed state. Next we write 

the equation of motion of the tube, assuming that the wall 

material elastic orthotropic, fraction  1/ Rh  , and the 

tube is rigidly attached to the situation. Under these 

conditions it is adequate to use the following equation  
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where,    is density of the wall, E2 is the tangent Young’s 

modulus, 1v  and 2v  are Poisson’s ratios, where 
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in the last equation is needed to 

account for bonds that prevent axial movement of the tube.  

The second term in Equation (8) is the inertia of the 

tube. Its influence is generally considered to be 

insignificant. This follows to: 
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So, we can assume that Equations (1)-(3) and (9) 

represent a closed system of hydro elastic, which can be 

used to describe the evolution of small perturbations in the 

tube containing the gas and liquid media. 

It is typical for the given situation to seasonably combine 

the derived system into an equation in relation to the 

desired function   tx, . For this purpose we proceed as 

follows: with the help of Equations (1) and (2) we 

eliminate the function ),( txu .As a result, we achieve  
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Considering (9) and (3), after simple transformations, 

we finally write the original equation of the problem: 
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where, 
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 is assigned to shorten the 

aforementioned equation. 

Now the further course of analysis is to reduce the 

solution of partial differential (10) down to the solution of 

ordinary differential equation. 

 

V. WAVE SOLUTION OF EQUATION 
As we know, harmonic analysis is used to describe the 

complex impulses that are typical to wave motions, i.e., the 

impulses of complex structure are broken down to 

sinusoidal components, which form a Fourier series. Due 

to the linearity and uniformity of the defining equation, 

origination of each harmonic with frequency n  is traced. 

Herein n is a natural number.  

We can therefore conclude that consideration of the 

purely sinusoidal oscillation with a given frequency   is 

crucially important. Therefore, using the method of 

separation of variables, we can find the solution of the 

Equation (9) in the following class of functions:  
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where, )(xy  is the unknown, in general, a complex function, 

and 1i  is the imaginary unit. Substituting (1) with 

(10), introducing the notation 
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where, y   is the second derivative of the y on the 

coordinate x.  
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Separating the dispersion equation between real and 

imaginary parts, we write the following: 
2
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 According to the square root rule of a complex number, 

based on (14), we can determine the   is  0 1 ,i      
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In further analysis, we will use the square root for 

which 0Im  . Therefore, we can set 10  i , 

where 1  characterizes the damping of the wave along the 

tube. The general solution of Equation (14) is well known 

and is written as: 
xixi BeAey      (15) 

where, A, B are constants of integration (in general, 

complex), which are defined from the boundary conditions 

of the problem. It is enough that if we take waves which 

spread only positive direction of X axes as xiAey  . 

Now obviously we have,  
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Following Equations (3) and (9), we rewrite the 

relations for pressure and displacement. They turn into the 

form of:  
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 It is left to find an easy way to calculate the function 

 txu , . The easiest way is to set  txu ,  as 

     tixtxu  exp,   (18)
 

Inserting this relation into the impulse Equation (1), the 

function  txu ,  can easily be determined and thus, we can 

record: 
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Considering, flow rate we can write, 
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From border condition we obtain, 
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Considering last equation in the Equations (16)-(19) 

we can obtain for velocity, density and displacement of 

mixture: 
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 Hence, in accordance with the Euler formula for the 

amplitudes of the desired functions, we can write: 
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VI. THE OBTAINED NUMERICAL VALUES OF 

THE SOLUTION OF THE ISSUE. 

 For numerical calculations of the problem we define the 

parameters of the system corresponding to the experimental 

data for the rubber tube with parameters  
5 2

2 4 10 N/mE   , 3.01 v , 1.02 v , 0.002mh  , 

0.012mR  , 11 sec10  ,  6 34 10 m /secvQ   . Also, 

let’s assume that 20.11 10 kg/m.sec   , 5 2
0 10 N/m .p   

 The tube is filled with mixture of water and small 

amount of additive of air bubbles. Considered four 

different fluids with differ densities such as carrier phases. 

For each mixture graph of dependence of amplitude on 

amount of number bubbles in unit volume is constructed. 

Evolution is taken for 1.001.0   value of 20 . Obtained 

amounts are compared at 0; 0.05; 0.1 value of X don’t 

affect values of amplitude. Change of amplitude by the its 

dependence on amount of bubbles is enough as it’s seen by 

graphs. 

Figures 1, 2 and 3 show dependences of the density, 

displacement and hydrodynamic pressure, respectively 

related to the two-phase liquid on the size concentration of 

the bubbles, which are tested on 1- glycerin, 2- water, 3- 

ethanol and 4- oil. 
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Figure 1. Dependence of the density of the two-phase liquid on the size 

concentration of the bubbles; 1- glycerin, 2- water, 3- ethanol, 4- oil 

  
Figure 2. Dependence of the hydrodynamic pressure of the two-phase 

liquid on the size concentration of the bubbles; 1- glycerin, 2- water,  
3- ethanol, 4- oil 

  
Figure 3. Dependence of the displacement of the two-phase liquid on 

the size concentration of the bubbles; 1- glycerin, 2- water,  

3- ethanol, 4- oil 
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