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Abstract- It has been proven that due to generation and 

recombination of charge carriers at the presence of an 

external constant electric field concentration fluctuations 

of charge carriers and electric field occur in 

semiconductors with deep traps. For the first time a Van- 

der-Paul type equation was obtained in these 

semiconductors for the alternating electric field. From the 

solution of the obtained equation both the amplitude and 

oscillation frequency were determined in the first 

approximation by the method of N.N. Bogolyubov and 

Yu.A. Mitropolsky. It was shown that the frequency of 

oscillations in the first approximation is more important 

than in the zero approximation. The amplitude of 

oscillations tend to a finite value at very high time value 

t  . This proves that there is a steady dynamic mode. 

A graph indicating the dependence of amplitude on time 

was developed. The values of the electric field and the 

constants of generation and recombination of charge 

carriers were determined.  

 

Keywords: Traps, Frequency, Amplitude, Oscillations, 

Generation, Recombination. 

 

I. INTRODUCTION 

The study of oscillatory processes is essential for the 

most diverse areas of physics and engineering. 

Electromagnetic oscillations in electronics and optics, 

sound and ultrasonic vibrations, all of these processes are 

combined through methods of mathematical physics in one 

common doctrine of oscillations. It is necessary to note 

that with the development of science and technology the 

role of the studies about oscillations is also rapidly 

increasing. The origins of the modern theory of oscillations 

can be clearly seen in the classical mechanics of the times 

Galileo, Huygens and the Newton's task of the motion of 

the pendulum. In the works of Lagrange has already the 

formed theory of small oscillations. In the further 

development it was called the theory of linear oscillations, 

i.e. fluctuations characterized by linear differential 

equations with constant coefficients both with 

homogeneous and free members being the known 

functions of time. 

In the works of A.N. Krylov and his students the 

differential equations have successfully applied to the 

problems of artillery, ship rocking and also to the theory 

of gyroscope. The main concept of oscillation theory, 

specific frequency, damping decrement, and resonance 

achieved the widest popularity.  

Due to the fact that the theory of linear oscillations 

developed in detail and its mathematical apparatus 

operates almost automatically, researchers strive to learn 

their oscillatory processes as far as possible to subsume 

under the linear scheme, discarding often without proper 

substantiation of nonlinear terms. Wherein sometimes 

completely overlooked one aspect that such a "linear" 

interpretation can lead to serious errors not only 

quantitative, but also a fundamentally qualitative nature. 

The fact is that the usual expansion in powers of the small 

parameter leads for the unknown quantities characterizing 

movement, to the approximate formulas, where along with 

members harmonically depending on time, there are still 

so-called secular terms such as 

sin  ,  cosm mt t t t   (1)  

For example, the movement described by the equation 

dx
x

dt
   (2) 

with a small positive parameter   has a solution    
tx ce   (3) 

If we apply the decomposition method, we get 
2 2

1 ...
2

t
x c t




 
     

 
 (4) 

This formula becomes applicable only until 
1

t


  and 

during this time x will not manage to change appreciably.  

The Van-der-Paul method of expansion of equation 
2

2
02

,
d x dx

x f x
dtdt

 
 

   
 

 (5) 

can lead to secular members in form of (1).  

After 20 second of the last century new methods of the 

oscillation systems’ research have been developed. They 

are described in detail in the book of N.N. Bogolyubov and 

Yu.A. Mitropolsky titled as “Asymptotic methods in the 

theory of nonlinear oscillations”.  
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The solution of the Van-der-Paul Equation (5) in the 

method of N.N. Bogolyubov and Yu.A. Mitropolsky 

seems in the following expansion form  

 

 

 

1

2
2

1

cos ,

, ... cos

,
n

n
n

i

x a U a

U a a

U a

  

  

 


  

   



 (6)  

where, ,t       is positive small parameter and 

 ,iU a   is periodic function of the angle with 2 period, 

and  the values ,  a   are determined as time functions 

according to the following differential equations:  

1

0

1

n
n

n

i

n
n

n

i

da
A

dt

d
B

dt




 







 





 (7) 

It is required that at small   the Equation (6) would 

give a sufficiently accurate representation of solution of 

Equation (5) for a sufficiently long period of time. 

Periodical functions  ,nU a   satisfy the following 

conditions: 

 

 

 

 

 

2
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, sin 0
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




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  
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  

  

















   (8)     

After expansion of the Van-der-Paul Equation (5) in 

powers of the small parameter   we get [1] :   

 

 

2

1 0

2

1 0

1
, cos

2

1
, cos

2

dx
A a f x d

dt

dx
B a f x d

a dt





 


 
 

 
   

 

 
   

 





  (9)   

 Substituting (9) in (7) we obtain the differential 

equation for determining the oscillation amplitude and 

frequency fluctuations in the first and second 

approximations. This mathematical method eliminates the 

secular terms of form (1). 

We will for the first time apply this asymptotic method 

of solution to the impurity semiconductors. First of all, it 

is necessary to obtain an equation of Van-der-Paul type (5) 

for semiconductors.  

 

II. MODEL OF IMPURITY SEMICONDUCTOR 

AND THE BASIC EQUATIONS OF PROBLEM  

Some impurities in semiconductor create the canters 

capable of finding in several charged states (mono-, di-, 

etc. positively or negatively charged). For example, gold 

atoms in germanium can except neutral state be once 

positively charged and singly, doubly and triply negatively 

charged centers. The atoms of copper, other than the 

neutral state can be singly, doubly and triply negatively 

charged centers.  

Thus impurity centers correspond to several energy 

levels in the forbidden zone. These energy levels are 

located at different distances from the bottom of the 

conduction band in the forbidden zone of semiconductor. 

These levels are called deep traps depending on the 

removal from their valence band. The deep traps are able 

to capture electrons or holes depending on their charge 

states. As a result of such capture the concentration of 

electrons in the conduction band and the concentration of 

holes in the valence band are changed, and consequently 

the conductivity of semiconductor varies.  

The deep traps can be more or less active under 

different experimental conditions. Singly and doubly 

negatively charged gold centers in germanium were active 

traps during the experiments conducted [2]. In the presence 

of an electric field, the electrons (and holes) receive an 

energy of 0eE  from the electric field (where e  is a 

positive charge, 0E is the value of the electric field and  

is electron mean free path). Due to this energy the electrons 

can overcome the Coulomb barrier of a singly charged 

center and be captured (i.e., recombined with the center). 

Furthermore, due to the warm transfer the electrons can be 

generated from the traps to the conduction band. The 

number of holes is also changing as a result of electron 

capture by deep traps. Further we will be referring to a 

semiconductor with carriers of both signs, i.e. electrons 

and holes with concentrations n  and n , respectively. In 

addition,  the semiconductor has negatively charged deep 

traps with a concentration of 0 ,N n n  . 

From N0, N is the concentration of singly negatively 

charged traps, N– is the concentration of doubly negatively 

charged traps.  

0N N N   (10) 

The linear theory of oscillations in the abovementioned 

semiconductors was discussed and presented in the early 

publications of the authors [3-6]. In these works, the 

system of equations is described in detail and we will write 

them without detailed analysis. 

 

III. EXPERIMENTAL PROCEDURE 

The continuity equation for electrons and holes n– and 

n+ in a semiconductor with above types of traps will be: 

   

   

1

1

0 0 0
0

1 10 0

.

. .

div 0

div 0 0

;

;

div 0,;  

rek

rek rek

n n
j n N E n N

t t

n n
j n N n N

t t

j n E D n j n E D n

n N n N
n n

N N

N n n
J J j j

t t t

 

 

 

 
     

 
      

         

  
 

 

  
 

  
     

   


           


      

 

     
      

      








 (11) 

Signs "0" mean the equilibrium values of the 

corresponding quantities. We will bring the system of 

Equations (11) to (5), i.e. we need to get from (11) a non-

linear equation for one of unknown values n–, n+, E, N–. 
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When linearization (11) 0 ,n n n  
    0 ,E E E    

0N N N  
  , the variables n , E   and N

  are 

considered much less than the equilibrium values 0n , 0E  

and 0N . However, when we need to build a theory of 

nonlinear oscillations the variables n , E   and N
  can 

be compared to their equilibrium values. Then, from the 

equation div 0J  , 0 =constJ J , we obtain: 

 

 

   

 

0
0

0
0

0 0
0

0 0 0 0 0 0

U E U E E

E E E

E n n E

n n n n E

 

   

  

   

   

   

   

       

     

     

    

     

  (12)       

D n n E      , 1
nT

eE n






  (13) 

 

 

 

 

E E
n n

E E

 

 


 

 

 
   

 
 (14) 

Taking into account (12), (13) and (14), from (11) we 

obtain:  

  1

n
n E N n

t x
  
    

 
  

 
 (15) 

 0

1 2
1

n nn n
E n N

t x n

    
  

 

    
   

  

   
      
   

 (16) 

1

N
n n

t
 
   


 


 (17) 

where, 1,2,   are the characteristic frequencies of the 

electron and hole capture and 

   

   

0 0

1 1 2 1

 ,  

0  ,  0

E N E N

n n

   

   

   

   

 

 
 

From (15), (16) and (17) we can easily obtain the 

following equation in operator form: 

 

2 2

12

2

1 1 0 0

E n
x t t tt

E
n n n

x n t


   

 
 


   

 
 

   
     

    

 
  

  

  (18) 

 

 2
1

2

2 2 3

2 2 3

o

E
t t t x

n

E E
x x

n n
t t

E E
x x

  
     


       


       


     

  
     




       


       


    

   
       

  
 

  
   


     

 


  

 

 (19) 

Let’s write (18) and (19) in the following form: 

1
ˆ n A

   , 2
ˆ n B

   (20) 

and from (20):                                                                                        

1
ˆ A = 2

ˆ B  (21) 

Designating 
0

E
y

E


  after opening (21), we obtain: 

 

 

2
2 2 2 3
0 12

2 2 3

1

2 4 4 5

2 3 4 5

1
2 3 5

2
1

1
6

3 10 14 6 2 11

9 2 7 2

6 6 12 14 12 4

1
1 7 12 7 5

4

2

y
y y y y

t

y y y yy

t y y y y

y y y y y
y

x y y y y

y

 



 

 

    


  
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  



 

 




  

 

   

 








 
       

      
   
      

      
  

       
 
 

 
4

2 3

2 2

y
y y


  




 
 

 
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 

 

 2 2 4 52 10 23 28 25 8
y y

y y y y y
x t

 
      
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 (22) 
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 
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2 3 4

22 3
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2

1
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1 2
2 1

,

ny
y y y y

t n

y
y y y y

t

y y y
y y y y

tt

dy y
f y

dt dx





 
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 

 

 

  
 

  

 

 
       

  


    



     
                 

 
  

 

 

 

 

2
1

0

2
0

1

, , sin  , 
2

4 3 2

4 1

enda dy dy
f y d

dt dt dx

n

n





  


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 

 

     
  

   

 



 
   

  
   

 
  

 

   
 

  
    
 



 (23) 

After integration of (23), we obtain: 

 
31

2

1

3
14 6

4 9

2

da
a a

ndt

n


   

   

   



 

   

   

  
   

    
          

  (24)  

When receiving (24), the values of both the electric 

field 0E  and the constant 
  were determined by the 

following formulas: 

1
0 2

3 1
; 7

3
E

    
 

 

 
 

 

 
   

 
 (25) 

Designating 1 






  ;     

 
2

1

3
14 6

4

n

n

   
 

   
   


   

 
    

 
  

from (24) we obtain  
9






 ;    

2 29 1
1 1

2 2

da
a a a a

dt

 

 
    

     
  

 (26) 
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Let’s write (26) in the following form:                                           
2

2 2

2

2 2

2 2

2 2

1 1
1  

4

....

1
1

da
a a

dt

da dt

a a

da da dt
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 (29) 

Considering Equation (29), if the initial value of the 

amplitude is zero then the amplitude will be equal to zero 

for t, and we obtain 0E  , i.e. trivial solution of the Van-

der-Paul equation.  

This trivial solution is obviously corresponding to the 

static mode, i.e. the absence of oscillations in the sample. 

However, based on this formula, it is easy to notice that the 

static mode is unstable. Indeed, matter how small has not 

been an initial value of the amplitude, it will still increase 

monotonically, approaching the limit value equal to 1/2 . 

From (29) we also observe that if 1/2
0a   then 

1/2a   for all 0t  . It corresponds to the dynamic mode 

 1/2
0 0cosE E t      (30) 

 

IV. RESULTS AND DISCUSSION 

Thus, the obtained dynamic mode has strong stability, 

whichever be the value 0 0a   all the same   1/2a t   

at t  . The conservative system has no dissipation or 

energy source, once excited vibrations can neither grow 

nor attenuate, and their amplitude is equal to its initial 

value. 

The semiconductor discussed in this paper has energy 

dissipation and its source, the electric field, 0E . Therefore, 

the amplitude of the oscillations will increase if the 

quantity of energy obtained through the charge carriers 

from electric field is greater than the amount of energy 

dissipated by the dissipative forces. If the quantity of 

energy obtained from the electric field is less than the 

quantity of dissipated energy, the vibrations will be 

damped. 

 
 

Figure 1. Dependence of the amplitude oscillation a(t) from time  

 

The graph  a t  clearly shows that at t  , 

  1/2a t  . Fluctuations in the first approximation can 

be calculated from the Equation (9).  
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From (31) at  
2
0

12

 


 




  we obtain the following:  
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 (32)  

The expression (32) indicate that the frequency of 

oscillation in the above semiconductor in the first 

approximation is greater than in zero approximation.  

Substituting the value of   in (25) we obtain the value 

of the constant
  

2
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1

1 1

14 21

  


 
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
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 (33) 

  and 
  positive constants and, therefore,  

from (33)         
1/2

1
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2

3

 







 
  

 
 (34) 

 

V. CONCLUSIONS 

Oscillation of electric field occurs in the above 

impurity semiconductors, concentration of charge carriers, 

and finally, the current density in the dynamic mode. The 

frequency of these oscillations in the first approximation is 

more than the initial oscillation frequency, and the 

amplitude increasing over time in dynamic mode, tends to 

a stable value. 
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