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Abstract- Extending wind power and uncertain nature of 
loads in power networks stand troubles in system 
provision because of the probabilistic trait of them. In 
order to plan accurately, it is important to evaluate 
uncertainties in optimal managing the power network. As 
regards to this matter, this paper introduces a probabilistic 
multi objective optimal power flow (MO-OPF) taking in 
to account the uncertainties of wind power and the 
demand. In this paper, a point estimate method (PEM) 
that utilizes 2m+1 points for estimation is used to handle 
uncertainties. In fact, the probability density function 
(PDF) of wind speed and demands pertaining to several 
locations are not accessible but statistical data is available 
in most cases, which helps to approximate the PDF. In 
this paper Electro Search algorithm, which is a new meta-
heuristic algorithm in optimizing problems is used to 
solve MO-OPF considering uncertainties. In order to 
show effectiveness of the procedure, IEEE 30-bus 
standard test system with extension of wind farms is 
simulated. At last, the gained results are evaluated with 
the Monte Carlo simulation (MCS) results. The evaluation 
shows great precision of the used procedure. 
 

Keywords: Optimal Power Flow, Load Uncertainties. 
 

I. INTRODUCTION                                                                         
Pollutant increase, decreasing power sources and 

growing load have addressed lots of notice to renewable 
power sources. In renewable power sources, wind energy 
has become more popular in power networks all over the 
world [1]. The extension of a high value of wind energy 
which has probabilistic character has extended necessary 
difficulties in power networks management and 
optimization [2]. The essential problem is that wind speed 
and produced energy of wind turbines vary stochastically. 

Optimal power flow (OPF) is a useful tool for 
observing economic issues of the power system which 
makes balance among power networks security and 
economic [3]. This problem is made of two different 
problems [4, 5]. Probabilistic Optimal Power Flow 
(POPF) is a useful gadget for observing effect of 
uncertainties on optimal condition of power networks [6-
8]. Solving POPF has 3 basic methods: simulation 
methods, analytical methods and approximation methods.  

Simulation methods known as Monte Carlo simulation 
(MCS) need high simulation time but it is popular because 
of simple implementation and high accuracy [9-11]. 
Analytical methods use linearization so have less accuracy 
[12-14]. Ref. [15] proposes an analytical method based on 
cumulates and Gram-Charlier expansion which solves the 
probabilistic load flow (PLF) with correlation of loads. 

One of the approximation methods is point estimate 
method (PEM) that is used to solve probabilistic optimal 
power flow in [3, 16, 17]. These methods have lesser 
simulation time and obtain precise results. Approximation 
methods provides good results in problems with low 
number of uncertain variables and have less accuracy in 
large scale problems. On the other hand, PEM methods 
need some modifications to solve problems which 
considers correlation in input Random Variables (RVs). 
Two kinds of PEMs i.e. 2m and 2m+1 schemes, are 
proposed in [18] in solving the probabilistic optimal 
power flow problem. 

An improved PEM is introduced in [19] to solve 
probabilistic optimal power flow problem with correlated 
wind energy, solar power and demand. Ref [20] provided 
a review of the techniques utilized to handle probabilistic 
optimal power flow and used a transformation known as 
unscented (UT) method to handle correlated variables. 
Zhao’s point estimate method (PEM) improved with Nataf 
transformation used to solve probabilistic load flow with 
correlation is introduced in [21]. In [22] 2m+1 PEM 
improved by a conversion is used to manage correlation in 
probabilistic optimal power flow problem. In [23], a 
method is introduced in order to observe the results of 
provisionally correlated input random variables using 
PEM for solving probabilistic optimal power flow 
problem. This method is utilized to solve multi-period 
probabilistic optimal power flow problem consisting 
correlated time periods. 

It is notable that, in OPF problem it is important to 
discuss more than one objectives together, as is important 
in real problems [24]. As regards, it is necessary to 
observe results of random variables in multi objective 
probabilistic optimal power flow problem that may be 
more effective in projecting of network to optimize 
several objectives together. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 33, Vol. 9, No. 4, Dec. 2017 

 53 

In this approach, Electro Search algorithm and 

weighted sum is utilized to solve POPF problem and 

conventional PEM is used to manage uncertainty of wind 

power and loads. This research observes the results of 

uncertainties on control variables and costs of 

probabilistic multi-objective optimal power flow problem. 

The IEEE 30-bus test network with integration of 2 wind 

farms is utilized to simulate the introduced method. 

Contributions of this approach are as below: 

1. Solving probabilistic multi-objective optimal power 

flow taking into account wind energy and demands 

uncertainties.  

2. Utilizing Electro Search algorithm as solving method.  

3. Investigating result of uncertainties on the objectives 

and control variables of the MO-POPF.  

 The rest of the paper is formed as below: Section II 

formulates MO-POPF and proposes point estimate 

method. Section III illustrates ES algorithm. Section IV 

presents results of simulations of evaluating introduced 

method on IEEE 30-bus test network and Section V 

concludes the proposed method and the results. 

 

II. PROBLEM FORMULATION 

Optimal power flow is a non-linear, non-convex and 

constrained problem. This problem can be solved 

considering more than one objective as multi objective 

problem and taking into account uncertain input variables 

which is known as multi-objective probabilistic optimal 

power flow. MO-POPF problem can be formulated 

generally as follows: 

1 2min ( , ) = { ( , ), ( , )}

s.t. ( , ) 0 ,  ( , ) = 0

F X Y F X Y F X Y

G X Y H X Y
 (1) 

where, 1( , )F X Y  and 2 ( , )F X Y  refer to objective 

functions of POPF problem, X and Y are set of control 

variables and input variables with uncertain nature of 

POPF problem, respectively, and ( , )H X Y , ( , )G X Y  

refer to the equality and inequality constraints of the 

POPF problem, respectively. This research considers the 

fuel cost and released emission of the generation units of 

network as goals of MO-POPF problem [25]. The 

objectives are formulated as follows: 

- Fuel cost function: 

2
1

=1

( , ) =
gN

i i gi i gi

i

F X Y a b P c P   (2) 

where, 1( , )F X Y  refers to the fuel cost object function of 

problem in $/h, gN  refers to the number of generators, 

giP (MW) refer to the ith generator’s produced active 

power and , ,i i ia b c  are the coefficients of fuel cost 

objective function. 

- Emission cost function: 

2
2

=1

( , ) = ( exp( ))
gN

i i gi i gi i i gi

i

F X Y P P P        (3) 

where, 2 ( , )F X Y  is pollutants released from ith generator 

(ton/h) and , , , ,i i i i i      are the emission objective 

function coefficients. 

In this paper, in order to solve multi-objective optimal 

power flow weighted sum method is utilized. The 

following expression presents the objective function 
which is made of weighted fuel cost and emission: 

1 2
1 2

1min 2min

( , ) ( , )
=

F X Y F X Y
F k k

F F
   (4) 

where, k1 and k2 are the weighting factors of total cost 

and released emission objective functions, and 

1min 2min,F F  are the least amount of the objectives that 

could be reached by solving OPF as single objective 

problem. In this paper, for equivalent weighting of 

objective functions k1 and k2 are assumed to be equal. 
 

- Control variables:  

1= [ , , , ]g g c NX P V T Q    (5) 

1 2 ( 1) 1 ( 1)= [ , , , ]
g gg g g g N NP P P P     (6) 

1 2 1= [ , , , ]
g gg g g gN NV V V V   (7) 

1 2 1= [ , , , ]
t tN NT T T T   (8) 

1 2 1= [ , , , ]
c cc c c cN NQ Q Q Q   (9) 

where, vector X refers to decision variables vector 

including active power of generators besides slack 

generator ( )gP , gV  refers to voltage altitude of 

generating buses, T  refers to tap of tap transformers and 

cQ  refers to the reactive power injected by capacitors.  
 

- Equality constraints (power flow constraints): 

=1

= ( cos sin )

N
b

gi wi di i j ij ij ij ij

j

P P P V V G B   
           

(10) 

=1

= ( sin cos )

N
b

gi ci di i j ij ij ij ij

j

Q Q Q V V G B     (11) 

where, ,gi giP Q  are the generated active and reactive 

powers, ,di diP Q  are the active and reactive power of 

loads in the ith bus, ,wi ciP Q  are the active power 

generated by wind farms and reactive power generated by 

shunt capacitors of ith bus, respectively and bN  is the 

buses numbers. It is notable that, reactive power injected 

by wind farms is not considered in this research as [22]. 

( , ), ( , )i i j jV V   are the voltage magnitude and angle at 

the ith and jth buses and = .ij i j    
 

- Inequality constraints: 
min max  ,  1,2, ,gi gi gi gP P P i N     (12) 

min max  ,  1,2, ,gi gi gi gQ Q Q i N     (13) 

min max  ,  1,2, ,gi gi gi gV V V i N   
 

(14) 

min max  ,  1,2, ,i i i tT T T i N      (15) 

min max  , 1,2, ,ci ci ci cQ Q Q i N      (16) 

min max  , 1,2, ,Li Li Li pqV V V i N      (17) 

max| |  , , 1,2, ,ij ij lS S i j N     (18) 
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where, ,L pqN N  are the connecting branches and PQ 

buses numbers, ijS  is power passing the branch which 

connects bus i to bus j, and LiV  is the magnitude of 

voltage of PQ buses. It is notable that min and max 

superscripts refer to lower and upper range of each 

variable. 

 

A. Uncertainty Modeling 

The first and important step of uncertainty modeling 

is to introduce proper statistical patter for the uncertain 

input variables of the network. Following sub-sections 

present method of modeling wind power and load 

uncertainties permanent-magnet synchronous motors in 

the rotor reference frame: 

 

A.1. Load Modelling 

Uncertainty in demands of network is modeled with 

normal distribution in this research [15, 26]. As regards, 

normal distribution is utilized to model the active load 

demand with constant power factor [26]. The PDF of the 

normal distribution used to this model is as follows: 
2

2

( )1
( ) = exp( )

(2 ) 2

d
d

P
f P



  


  (19) 

where, dP  refers to the active power demand, and ,   

are standard deviation and mean value of dP , 

respectively 

 

A.2. Wind Speed Modelling 

Wind speed statistical data follow Weibull 

distribution rather than normal distribution. Refs. [27, 28] 

show that two parameter Weibull distribution could be 

utilized to model wind speed observations. Weibull 

distribution mathematically could be shown as below 

[28]: 

( 1)( ) = ( ) exp( ( ) )h hh v v
f v

c c c

   (20) 

where, v is wind speed, c and h are the shape and scale 

parameters of the distribution. Dependence of the 

generated power of wind turbines to the wind speed could 

be modeled by special curves. Following expression 

presents an example of power-speed characteristic for a 

wind turbine [29].  

,

, , ,
, ,

, , ,

,

0                      ,   0

  ,
=

                   ,

0                      ,         

i in i

i in
n i in i i n i

n i in iwi

n i n i i o i

o i i

v v

v v
P v v v

v vP

P v v v

v v

 



   
  




 (21) 

where, iv  is the wind speed in the location of ith turbine 

and ,n iP  is its nominal output power, and , , ,, ,o i n i in iv v v ,  

and , , ,, ,o i n i in iv v v  are the cut-out, nominal and cut-in 

speed of the ith turbine. A speed-power curve for a 

sample wind turbine is shown in Figure 1 [30]. 

 
Figure 1. A speed-power characteristic for a sample wind turbine 

 

A.3. Point Estimate Method 

     In this research, 2m+1 PEM which proposed in [17] is 

utilized to solve MO-POPF problem. The main concept 

of the PEM is estimation of uncertain input variables with 

many spatial points reached from statistical data. In 2m+1 

PEM, when the problem has m random variables, each 

output variable of the problem should be evaluated 2m+1 

times. As mentioned in formulation section, in MO-POPF 

model the output variables could be shown with: 

= ( , )Z F X Y   (22) 

In this expression, vector X refers to control variables and 

vector Y refers to uncertain input variables. 

= [ , , , ] ,  = [ , ]G G G w dX P V T Q Y P P   (23) 

For solving probabilistic MO-OPF problem, in first 

step on the standard normal distribution 2m+1 points are 

determined for the uncertain input variables according to 

PEM method. Then a transformation is used to transfer 

the samples from standard normal distribution to other 

distributions following wind speed or loads. The last step 

is applying the inputs to the introduced model 2m+1 

times and obtaining mean and standard deviation of 

object functions i.e. total fuel cost, released emission and 

control variables of POPF problem. In 2m+1 PEM 

method, each RV is determined with 3 weights and 

locations that can be expressed as: 

=  , ( = 1,2,..., ; = 1,2,3)ik i ik iy i m k     (24) 

where, i  
and i  are the standard deviation and mean of 

iy  and ik  is the coefficient referring to the kth location 

on its probability distribution which can be calculated 

using following expression. Standard locations ik  are 

calculated using Equation (25). 

3 23
4 3

3

3
= ( 1)  , ( = 1,2)

2 4

= 0

ki
ik i i

i

k


  



  
 (25) 

where, 3i  and 4i  are the skewness and kurtosis of iy . 

For each location iky  a weighting factor is calculated 

using Equation (26). 
3

1 2

( 1)
=  , ( = 1,2)

( )

k

ik
ik i i

w k
  




  (26) 

3 2
4 3

1 1
=i

i i

w
m  



  (27) 
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In this regard all the concentrations for all uncertain 

input variables ( , )ik iky w  are calculated. Then, 2m+1 

vectors are formed as input variables (Y): 

1 2 1 1( , ) = [ , ,..., , , ,..., ]

( = 1,2; = 1,2,..., 2 )

j i ik i mY i k y

k j m

     
  (28) 

2 1 1 2= [ , ,..., ]m mY      (29) 

     Deterministic MO-OPF simulation is run considering 

every 
jY  vector as input. Then MO-OPF is solved 2m+1 

times and 2m+1 proper solution is gained (Z). At last, 

weighting factors are used to calculate statistical 

moments of output variables of Z as follows: 
3

=1 =1

= [ ( , )] = ( ( , ))
m

n n ik n

i k

E Z i k w Z i k    (30) 

3
2 2

=1 =1

[ ( , ) ] = ( ( , ) )
m

n ik n

i k

E Z i k w Z i k   (31) 

2 2 2 2= [ ( , ) ] ( ( )) = ( )n n n n nE Z i k E Z E Z     (32) 

where, n  is output variables number, n  and n  are 

standard deviation and mean value of nth output variable. 

 

III. ELECTRO SEARCH ALGORITHM 

Electro Search (SE) algorithm is a new optimization 

algorithm inspired from nature based on the spinning of 

electrons around the nucleus of an atom [31]. Electro 

search (ES) algorithm utilizes physical principals such as 

Bohr model and Rydberg formula in solution searching 

method. Electro search algorithm presents 3 phases for 

solution searching procedure. First phase is spreading 

phase; the atoms are randomly distributed in the 

molecular space (spreading the candidate solutions in the 

search space). The second phase is orbital transition 

phase in which the electrons go to larger orbits in order to 

reach higher energy levels (searching for better fitness 

values). The third phase is relocation phase; the atoms 

move towards the best location of the whole atoms. The 

important feature of the ES algorithm is that ES 

algorithm do not need parameter tuning in the global 

optimal searching process: 

 

A. Structure of an Atom 

Atoms are made of nucleus and one or more electrons 

orbiting around the nucleus, this is the Bohr's atomic 

model. The basic feature of the Bohr's atomic model is 

that the energy of electrons orbiting in the atom are 

discrete values known as quantized levels. According to 

Bohr's model only certain radii for orbits are allowed and 

the orbits between them are not stable. According to 

quantum mechanics, electrons can transit between the 

orbits by absorption or emission of the difference energy. 

     When an electron goes to a large orbit, it may return to 

the initial orbit by emitting a photon. In hydrogen atom, 

the energy of the emitted photon can be calculated using 

Rydberg formula which is as follows: 

2 2

1 1
= = ( )i f E

f i

E E E R
n n

    (33) 

where, fn  and in  are the final and initial orbits, 

respectively, and ER  is the Rydberg energy. According 

to = /E hc  , wavelength of the emitted photon can be 

calculated by following expression: 

2 2

1 1 1
= ( )

f i

R
n n

   (34) 

where, R  is Rydberg constant ( = / )ER R hc . In the ES 

algorithm, searching for solutions with better fitness 

function value is analogous to electrons searching for 

higher energy levels and the domain of infeasible 

solutions is analogous to the molecular space that atoms 

are stated. The electrons spinning the nucleus of each 

atom change their orbits until obtaining molecular states 

with highest energy level that is analogous to the global 

optimal solution. 

 

B. The ES Algorithm Phases 

As mentioned, ES algorithm can be introduced in 

three phases as below: 

 

B.1. Atom Spreading; The First Phase  

In this phase, the candidate solutions are randomly 

spread in the infeasible domain of the problem solutions. 

Each of the candidate solutions is analogous to an atom. 

Each atom has electrons which orbit the nucleus. 

According to Bohr's model the electrons can transit 

between the orbits by absorbing or emitting photons. 

 

B.2. Atom Spreading; The Second Phase  

In this phase, the electrons rotating nucleus go to 

higher energy levels. The ES algorithm inspired solutions 

local search from the concept of the quantized energy 

levels in hydrogen atom. This process can be formulated 

as following expressions: 

2

1
= (2 rand 1)(1 )

2,3,4,5 , rand [0,1]

i ie N r
n

n

   

 

  (35) 

where, iN  is the current position of the nucleus, rand is a 

random number in the range [0,1] with uniform 

distribution, n is the energy level and the orbital number 

in which electrons can rotate, r is the orbital radius 

defined by using Dk (r is defined randomly in the first 

iteration). In every iteration the electrons are located in 

the orbitals using Equation (35). Then the fitness of 

electrons are evaluated and the electrons with the best 

fitness (highest energy) is known as beste . In the next step 

the beste  is used to relocating the nucleus in global 

searching process. 

 

B.3. Atom Spreading; The Third Phase  

In this phase, the nucleus is relocated based on the 

energy of an emitted photon. The formulated nucleus 

relocation based on Rydberg formula is as follows: 

2 2

1 1
= ( ) ( )k best best k

best k

D e N Re
N N

      (36) 
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, =new k k k kN N Ac D    (37) 

where, k is iteration number, kD  is the relocation 

distance, bestN  is the current best nucleus position, beste  

refer to the best electron around the nucleus, kN  refers to 

the current position of the nucleus, kRe  is Rydberg's 

energy constant, kAc  is accelerator coefficient. Note that 

presented equations are in vector form and the symbol   

denotes element by element vector multiplication. This 

procedure is performed on all nuclei in order to replace 

all of the atoms towards the global optimum solution. 

Detailed information about parameter tuning and about 

algorithm can be found in [31]. 

 

IV. SIMULATION RESULTS 

The IEEE 30-bus standard test system is utilized to 

evaluate the ES algorithm. This network has 30 buses, 41 

transmission branches, 6 generators, 4 tap transformers 

and 9 capacitors. Network data of the IEEE 30-bus 

system can be reached in [32]. Emission objective 

function coefficients could be found in [25].          

Matpower 4.1 is utilized in power flow computations. 

Voltage magnitude and transformers tap can be varyied in 

the limit of [0.95,1.1] pu and [0.9,1.1] pu. Reactive power 

generated by capacitors can be raised up to 0.05 pu. 

 

A. ES Algorithm for Solving Deterministic OPF 

Problem 

In this section, the assessment of ES is examined in 

solving deterministic OPF on IEEE 30-bus test system. In 

this case no uncertainty and wind turbines are considered 

in order to examine and compare the performance of ES 

algorithm with some other methods. This case considers 

fuel cost and released emission of generation units of 

system as objectives. In this case, ES algorithm hired 100 

atoms for solving deterministic and probabilistic optimal 

power flow. The results of solving single objective 

deterministic optimal power flow are tabulated in Table 1 

and are compared with results of other research results. 

According to this table ES algorithm has good 

performance in comparison with other meta-heuristic 

algorithms in solving OPF problem. In this regard, Table 

2 compares power generation of results of ES algorithm 

with ABC and MSA algorithm. 

In order to show performance of ES algorithm in 

solving multi objective OPF, Table 3 compares results of 

ES algorithm with many other meta-heuristic algorithms 

used to solve MO-OPF. According to this table results 

obtained by ES algorithm cannot be dominated by results 

of other algorithms. In this regard, ES algorithm has 

acceptable performance in solving MO-OPF problem. 

 
Table 1.  Results of solving deterministic single objective OPF 

 

Algorithm Fuel cost ($/h) Emission (ton/h) 

ES 799.2446 0.2047 

ABC [34, 40, 41] 800.66 0.204826 

LTLBO [33] 799.4369 0.2047 

MSFLA [36] 802.287 0.2056 

SFLA [36] 802.21 0.2063 

 Table 2. Comparison of power generated in deterministic single objective OPF 
 

variables ES ABC [34] MSA [36] 

 Fuel cost Emis Fuel cost Emis Fuel cost Emis 

PG1 (MW)  177.444 63.9202 176.791 64.062 177.213 64.99 

PG2 (MW) 48.601 67.4310 48.502 67.584 48.732 67.63 

PG5 (MW) 21.368 50 21.507 50 21.457 50 

PG8 (MW) 21.145 34.9999 21.329 35 21.063 35 

PG11 (MW) 11.541 30 12.30 30 11.965 30 

PG13 (MW) 12 40 12 40 12.002 40 

Cost ($/h) 799.244 943.4054 800.660 944.439 800.509 944.50 

Emis (ton/h) 0.3672 0.2047 0.3651 0.20482 0.3664 0.204 

 
Table 3. Comparison of fuel cost and emission in MO-OPF solution 

 

Method Total fuel cost ($/h) Emission (ton/h) 

ES 803.1542 0.2503 

NSMOOGSA [37] 836.978 0.2236 

BSO [38] 835.0199 0.2425 

MOEA/D [39] 833.72 0.2438 

NSGA-II [39] 835.59 0.2449 

 

B. Probabilistic MO-OPF 

     As mentioned, the active load demands are considered 

to follow normal distribution. In this model, mean values 

are the rated demand at load buses and standard 

deviations are 5%  of the mean demands [21]. The load 

buses supposed to have constant power factor equal to 

0.85 and reactive power demand assumed to vary 

according to power factor and active power [21]. In this 

paper, two wind farms are added to buses 29 and 30. 

Each of the connected wind farms consist of 4 wind 

turbines and both of the wind turbines are connected to 

the network via a transmission line with the impedance of 

0.01+j0.01 pu. Table 4 presents information of the 

utilized wind turbines. As mentioned, the speed of wind 

is modeled with 2 parameter Weibull distribution. The 

shape and scale parameters are considered 2.01 and 7.28 

[21]. 

 
Table 4. Wind turbine parameters 

 

Parameter  Rating Capacity  

(MW)  

Cut in speed  

(m/s)  

 Cut out speed  

(m/s)  

 Rating speed 

(m/s) 

Value   2.5  3  25  12.5  

 
Table 5. Comparison of results for single objective OPF for different cases 

 

Variables Fuel cost Emission Multi-Objective 

 Mean 
Standard 

deviation 
Mean 

Standard 

deviation 
Mean 

Standard 

deviation 

PG1 (MW) 177.4445 2.6145 63.9751 2.5421 118.2513 2.7121 

PG2 (MW) 48.6013 1.2156 67.3542 1.3235 56.5421 1.2541 

PG5 (MW) 21.3682 0.5321 49.8214 0.6512 59.8124 0.3541 

PG8 (MW) 21.1452 1.24e-9 34.9514 0.00001 35.0000 2.01e-10 

PG11 (MW) 11.5412 1.2342 29.9621 0.3214 23.4152 0.9214 

PG13 (MW) 12 1.4523 38.9951 1.3214 23.1214 0.8421 

Cost ($/h) 799.2446 21.7124 942.1422 34.1254 804.2143 23.1214 

Emis (ton/h) 0.3672 0.00235 0.2047 0.000012 0.2514 0.00041 

 

     In this case, OPF problem is solved probabilistically 

as single objective and multi objective problem. Table 5 

presents standard deviation and mean values of generated 

power, fuel cost and emission released in probabilistic 

single objective and multi objective OPF. According to 

this table uncertain input variables caused increase in 

costs. It shows that mean values are close to deterministic 

OPF results where the standard deviations are noticeable. 
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C. Accuracy 

     Monte Carlo Simulations (MCS) is very accurate 

when using high number of simulation runs and can be 

used as reference method in evaluation of other methods. 

In this paper MCS is used to illustrate performance and 

accuracy of the employed method. In this regard, mean 

and standard deviation of output variables, resulted by 

employed method are evaluated with mean and standard 

deviation resulted by 2000 runs of MCS. The errors of 

mean and standard deviation for proposed method can be 

expressed using following equations. 

100( )
=| | [%]MCS

MCS


 





  (38) 

100( )
=| | [%]MCS

MCS


 





  (39) 

     Table 6 presents the errors of mean and standard 

deviation of generated power, fuel cost and emission for 

POPF results. This table presents average error for all 

generation units. Figures 2 and 3 present convergence 

characteristics of MCSs with 2000 runs for standard 

deviation and mean values. Good convergence of the 

MCS shown in Figures 2 and 3 determine that MCS with 

2000 iterations is a good reference for error evaluations. 

According to Table 6, proposed method has low error and 

has acceptable accuracy in solving POPF problem. 

 

 
 

Figure 2. MCS results convergence for mean values 

 

 
 

Figure 3. MCS results convergence for standard deviation 

 

Table 6. Mean and standard deviation average error by 2000 run MCS 
 

Output 

variables 

Mean error Std error 

  
PG (%) 0.2414 2.0167 

Fuel Cost (%) 0.0264 1.0562 

Emission (%) 0.0621 0.5376 

 

V. CONCLUSIONS 

This paper, proposes ES algorithm using PEM to 

solve multi-objective optimal power flow considering 

released emission and fuel cost as objective function with 

uncertainties in wind power and load demands. The basic 

idea of the research proposed in this paper is to utilize 

electro search algorithm combined with point estimate 

method to solve probabilistic multi-objective optimal 

power flow problem. In this paper it is shown that 

uncertainties in the input variables affect both control 

variables and all objectives and this effect are more 

considerable in standard deviation than mean values. This 

paper surveys the accuracy of the proposed method using 

MCS with high number of iteration. The efficiency of the 

method is shown by simulating on IEEE 30-bus test 

network.  
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