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Abstract- This paper presents an algorithm for 
reconfiguration associated with placement and sizing of 
Distributed Generation (DG) to minimize energy losses 
and improve network voltage profile on radial electrical 
networks considering proposed algorithm to independent 
loop identification. An expression of analytical method to 
calculate the optimal DG size and location and Genetic 
algorithm for reconfiguration are used in this study. The 
proposed methodology was validated and examined in 
IEEE 33-bus distribution power system. 
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I. INTRODUCTION                                                                         

For reducing the short circuit current and facilitate their 
protection scheme, Distribution systems have been 
radially operated. Hence, a path from the system 
components to the substation is fed each load. So the 
systems include low voltage as well as low reliability with 
high power loss.   

In the process of feeder reconfiguration, distribution 
network structures are changed by changing the status of 
switchgears. There are two kind of switching devices 
including sectionalizing as normally closed switches and 
tie as normally open switches. Since by changing the status 
of switches, the power flow to loads will be changed as 
result it affects the loss of power, voltages and reliability 
in normal operation status can improve the performance of 
distribution network as well as decrease the cost by correct 
switches status [1-5].  

Electrical power demand is gradually increasing. 
Minimization of power loss for satisfying the power 
demand is very important issue. The role of distributed 
generation (DG) is vital in electrical power supplying and 
losses decreasing. The DGs are as embedded generation or 
decentralized generation generate power in the range of 3-
10,000 kW. Stability, reduction of power loss, reliability 
and improving voltage are the main advantages of using 
DG units. When the DG units are designed properly, the 
reverse flow from larger DG units can lead to further 
damage to system, causing voltage fluctuations and cost 
increases. Hence, it is important to find the best designing 
for DG units to obtain losses minimization [6-9]. 

Reconfiguration and DG placement methods in radial 

networks are attractive alternatives for power flow control, 

voltage profile management, improving system stability, 

and losses minimization [10-16]. Reconfiguration methods 

are well discussed in [1-5] whereas DG allocation is 

addressed in [6-9]. Refs. [10-16] study the allocation and 

reconfiguration solutions of DG units.  

The network reconfiguration was presented by Merlin 

and Back [1], in order to reduce the power loss by a 

heuristic technique called as branch-and-bound type. In 

1990, the switch exchange method was recommended by 

Carlos, Castro and Ander [2]. The algorithm was tested in 

17-node, three feeder network and established switching 

operations to reduce power losses. Naveen, Sathish Kumar 

and Rajalakshmi [3] suggested a heuristic algorithm to 

discover the tie switch position in each loop to decline loss.  

In this paper, the network reconfiguration problem as 

the non-linear optimization issue is applied to modify 

bacterial foraging algorithm in a general context. For 

achieving optimal configuration, meta-heuristic 

algorithms, such as GA have gradually been utilized, 

because the heuristic methods are usually fast but they may 

not attain it and also meta-heuristic algorithms are utilized 

to minimize the loss [4].  
In this paper, for considering the reconfiguration 

problem like determining the switch operation schemes, 

the enhanced genetic optimization algorithm is used. 

Therefore, improving the algorithm on crossover and 

mutation operations of original Genetic Algorithms are 

depend on the information of a single loop caused by 

closing a normally open switch. Refs [5-9] present the 

optimal DG allocation and size in radial power networks 

as well as power loss reduction and improving voltage 

profile with heuristic algorithms. But the results of 

heuristic methods are not reliable, then using analytical 

methods for DG placement will be useful.   

In [16-22] an analytical expression to calculating 

optimum size and location for DG (Distributed 

Generation)/capacitor is proposed and the objective of 

DG/capacitor location is to decrease the losses. The 

suggested method is proper for the DG designing in power 

distribution systems. Until 2001, most previous studies 

cause in redundant losses and cannot output the minimum 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 33, Vol. 9, No. 4, Dec. 2017 

 85 

loss configuration because they have studied in a separate 

manner such as DG compensation problems without 

accounting bus reconfiguration, or applied reconfiguration 

problems without considering the capacitor/DG addition.  

In [16], to determine the DG settings and feeder 

reconfiguration for optimizing the optimal loss in 

distribution networks, the simulated annealing method is 

used.  The algorithm represents the DG placement after the 

reconfiguration, to decrease losses and improving voltage 

profile, is proposed in [15] too, considering different load 

levels. Ref. [16] employs DG placement and the network 

reconfiguration simultaneously too, to improve the system 

reliability and minimize energy losses and exposed to fulfil 

the constraints of operation and power quality.  

In this paper, the network DG placement/sizing and 

reconfiguration increase the system efficiency in a multi-

objective optimization problem. Despite to previous 

papers, where Independent loops were not identified, 

identification of Independent loops is the main section of 

this paper, where describes is section II. Beside of 

introduction, the paper is prepared in 8 sections as follows:  

‘Independent loop identification in large distribution 

network’ presents independent loops of a network with a 

novel algorithm and is tested on 33-bus test distribution 

network.  

‘Reconfiguration Algorithm’ presents a modified 

version of graph theory for distribution feeder 

reconfiguration. In this section Genetic Algorithm is 

applied to reconfiguration of distribution network.  

‘DG Placement/Sizing Algorithm’, proposes an 

efficient analytical approach for capacitor placement in 

radial distribution systems that determine the size of 

capacitor with a purpose of minimizes of power loss and 

improving the voltage profile and the optimal locations.  

‘Proposed Methodology’ describes to find independent 

loops, reconfiguration and the optimum size and location 

of capacitor in the distribution system with a flow chart. 

‘Results’ presents the results of proposed method in test 

distribution network. 

 

II. INDEPENDENT LOOP IDENTIFICATION IN 

LARGE DISTRIBUTION NETWORK 

In Reconfiguration the topology of the network is 

changed by toggling the statuses of sectionalizing or 

normally closed switches that are strategically installed in 

certain system position. It is hard task to find the best 

configuration for large systems, substantially systems with 

a large number of sectionalizing switches. identification of 

Independent loops in a large network is difficult.  

In this section, an algorithm is proposed to identify 

Independent loops of a network. The proposed 

methodology is analyzed on 33-bus test distribution 

network which is shown as single line diagram in Figure 

1, includes 33 buses and 37 branches and total load of 3.72 

MW and 2.3 MVAR. Ref. [16] gives data of network. 

The computational procedure to find the independent 

loops in a distribution network is described as follow: 

1. Find nodes from “to node” column in Table 1, where 

repeated two times. (These nodes in IEEE 33-bus test 

distribution network data are 29, 18, 15, 12 and 8) 

2. Find paths of each node in step 1, from nodes to first 

node. (As shown in Figure 2, these paths in IEEE 33-bus 

test distribution network are L1_29, L2_29, L1_15, 

L2_15, L1_15, L2_15, L1_12, 2_12, L1_8 and L2_8). 

Each node have two paths. 

3. Delete common sections in two paths of each node of 

steps 1 and 2 to creation of Loops. (As shown in Figure 3, 

there are 5 loops in IEEE 33-Bus test distribution network, 

but they are not Independent loops). 

 

 
 

Figure 1. Single line diagram of IEEE 33-bus test distribution network 
 

 
 

Figure 2. Directions of first node to loop nods in IEEE 33-bus test 

distribution network 
 

 
 

Figure 3. Loops nods in  IEEE 33-bus test distribution network 
 

4. Find Independent loops from loops of step 3 as follow:  

4.1. Compare each loop of step 3 with each other. If ith 

loop has LNoi sections and jth one has LNoj sections and 

the common sections are LM, then number of distinct 

section in ith loop is LDi=LNoi–LM and the distinct 

sections of jth one is LDj=LNoj–LM.  

4.1.1. If  LNoi>(LDi+LDj) or LNoj>(LDi+LDj) then: 

- If (LNoj–(LDi+LDj))>(LNoj>(LDi+LDj)) then divide 

these loops to two Independent loops: jth loop and the 

new loop with distinct sections of ith and jth loops. 

- If (LNoi–(LDi+LDj))<(LNoj>(LDi+LDj)) then divide 

these loops to two Independent loops: ith loop and the 

new loop with distinct sections of ith and jth loops. 

4.2. If i is not loops of step 4.1 then, ith loop is 

independent loop. 

Table 1 shows comparison of loops in Figure 3 to 

identify Independent loops. Figures 4(a) to 4(e) show the 

independent loops (Loop_M1, Loop_M2, Loop_M3 and 

Loop_M4), where achieved from step 4.1. 
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III. RECONFIGURATION ALGORITHM 

   Proper switching of tie and sectionalizing switches of the 

network, typically known as reconfiguration, may result in 

a significant loss reduction or voltage improvement in the 

network. The method which is employed in this paper for 

simultaneous feeder reconfiguration is the modified 

version of graph theory for distribution feeder 

reconfiguration. This method consist of below steps: 

1. Opening one section of each independent loop to have a 

radial network. 

2. Checking if the network is radial and all nodes are feeds 

from network or no. To check this step: 

2.1. Dependence matrix (MBusNo*SectionNo) is 

developed as below, where BusNo is number of buses 

and SectionNo is number of sections: 

1   if th bus is connected to th section

0   if th bus is not connected to th section
ij

i j
M

i j


 


 

2.2. Dependence matrix degree (MDBusNo*1) is 

developed from M as: 
1

SectionNo

i ij

j

MD M


   

2.3. Eliminate node with MDi=1 and the connected 

section from network. 

2.4. Repeat from 2.1 for 2*BusNo times. 

2.5. If MD matrix size is one*one, the network with 

opened sections in step 1 is accepted else the selected 

opened sections is not accepted. 

From Table 1 and Figures 4(a) to 4(e), independent loops 

of IEEE 33-bus test distribution network is shown in 

Figure 5. 

 

 
 

Figure 5. Independent loops of IEEE 33-bus test distribution network 

 
Table 1. Independent loops of IEEE 33-bus test distribution network 
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Loop 1 10 

Loop 2 15 9 1 6   -  Loop_M1, Loop_M2 from step 4.1 

Loop 3 7 0 10 7 - -    

Loop 4 21 2 8 19 - -    

Loop 5 11 3 7 8 - -    

Loop 2 15 

Loop 1 10 9 6 1    - Loop_M1, Loop_M2 from step 4.1 

Loop 3 7 3 12 4 - -    

Loop 4 21 6 9 15 - -    

Loop 5 11 3 12 8 - -    

Loop 3 7 
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Figure 4(a). Common & distinct sections of Loop 1 and Loops 2, 3, 4, 5 in IEEE 33-bus test distribution network to identify main loops 

 

 
 

Figure 4(b). Common & distinct sections of Loop 2 and Loops 1, 3, 4, 5 in IEEE 33-bus test distribution network to identify main loops 
 

 
 

Figure 4(c). Common & distinct sections of Loop 3 and Loops 1, 2, 4, 5 in IEEE 33-bus test distribution network to identify main loops 
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Figure 4(d). Common & distinct sections of Loop 4 and Loops 1, 2, 3, 5 in IEEE 33-bus test distribution network to identify main loops 
 

 
 

Figure 4(e). Common and distinct sections of Loop 5 and Loops 1, 2, 3, 4 in IEEE 33-Bus test distribution network to identify main loops 

IV. DG PLACEMENT/SIZING ALGORITHM 

  The radial distribution networks using optimal DG 

placement is important for power flow control, voltage 

profile management, improving system stability, voltage 

profile management, and losses minimization. The 

proposed methods for DG placement issue can be arranged 

into four aspects including analytical, numerical 

programming, heuristic and artificial intelligence-based 

(AI-Based). This paper introduces an effective method for 

optimal placement and sizing of DG units in radial 

distribution networks to minimize of power loss and 

improve the voltage profile. Newton/Raphson load flow 

method is used for calculation of active and reactive power 

loss and node voltages in this paper.  The optimal DG 

designing in size and location effects in minimum loss in 

the distribution system. Considering N bus distribution 

system, network may be formulated as given below active 

loss equation: 

1 1

[ ( ) ( )]
N N

L ij i j i j ij i j i j

i j

P PP Q Q Q P PQ 
 

     (1) 

cos( ) ;  sin( )
ij ij

ij i j ij i j
i j i j

r r

VV VV
          (2) 

where,  [ –1]bus busZ Y  is impedance matrix, 

real( )ij ijr Z , imag( )ij ijx Z , i iV   is ith bus voltage, 

Pi and Qi are injected active and reactive power of ith bus. 

To minimize network loss with DG installation, the 

rate of change of losses with respect to injected active 

power and power factor ( )DGi i DGiQ a P  are zero as 

Equation (3): 

1,

2 2 ( ) 0
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where, i Gi DiP P P   is injected reactive power, PGi is DG 

active power and PDi is load active power in ith bus. 

Therefore, Equation (3) can be rewritten as bellows: 

1

1 ( )
N

Gi Di ii j ij j
ii j

j i

ii Di i
i

ii Di i

P P P Q

Q B
a

P A

 









  







 (4) 

Equation (4) results the size of DG at each bus. If this 

DG located at ith bus the minimum real power loss is 

resulted compared to the same DG placed at any other bus.  

Then ith bus is the optimal place for this DG unit. Any 

size of DG rather than PGi and located at bus i, will lead to 

higher losses. In this study, both of loss and voltage profile 

is important is placing DG and the placement algorithm is 

as follow: 

1. Base load flow (backward/forward) and computing 

network loss (PLoss,Base) with Equation (1) and voltage 

sensitivity with Equation (5). 

,

1

1

((|| | 1 |) )
BusNo

Lj

Sens Base j BusNo
j

Li

j

P
V V

P



  


 (5) 

where, PLj is active load of jth bus. 

2. Computing DG size for each bus with Equation (4). 

3. Placing each DG of step 2 in its bus and computing 

network loss (PLoss) with Equation (1) and voltage 

sensitivity (Vsens) with Equation (5). 

4. Computing cost function for each bus as Equation (6). 

,
1 2

, , ,

Loss Sens Sens
Cost

Loss Sens Base Sens Base

P V
F W W

P V
   

where, W1 and W2 are weights and 1 2 1W W  . 

5. Sort Fcost function for buses and accept the bus with 

minimum cost as best bus to set capacitor with the size of 

step 2. 

In this section, related to previous sections, the 

proposed methodology is described to find independent 

loops, reconfiguration and the optimum size and location 

of DG in the distribution system. Figure 6 illustrates the 

flowchart for the proposed methodology to reconfiguration 

and optimal placement of DGs in the distribution system 

through applying genetic and analytical methods. In this 

flowchart, the hatched block denotes DG allocation 

algorithms described in section IV. Also “Calculate loop 

number” block denotes algorithm in section II to find 

independent loops and the “graph theory” block refers to 

section III. 

 

V. RESULTS 

The results obtained with the proposed methodology 

are presented in the paper. The 33-bus system, 12.66 kV 

and 10 MW is used and the substation voltage is 

considered as 1.0 p.u. As presented in table 2, in this initial 

topology, the open branches are 33, 34, 34, 36 and 37 and 

the total active power loss and voltage sensitivity are 211 

kW and 0.0517 respectively. 

 
 

Figure 6. Flowchart of proposed methodology 

 
Table 2. Main network results 

 

Main network 

Open Switches Loss (kw) Voltage Sensitivity 

33-34-35-36-37 211 0.0517 
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simultaneously, is considered. 

Case 2. Comparison of both feeder reconfigurations with 

two DGs addition and feeder reconfiguration 

simultaneously, is considered. 

Case 3. Comparison of both feeder reconfigurations with 

three DGs addition and feeder reconfiguration 

simultaneously, is considered. 

Case 4. Comparison of both feeder reconfigurations with 

four DGs addition and feeder reconfiguration 

simultaneously, is considered. 

As shown in Table 3, for W1=0.5, the cost of all cases 

for only reconfiguration or reconfiguration with DG 

allocation are equal approximately. Comparison of only 

reconfiguration and reconfiguration with DG allocation for 

each case, shows that DG allocation with reconfiguration 

cause near 20% reduction of cost. Figures 7 to 10 show 

simulation results of all four cases. Number of iteration for 

all cases is 20. 
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Figure 7. Reconfiguration and Reconfiguration with one DG 

allocation, Case 1 
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Figure 8. Reconfiguration and Reconfiguration with two DG 

allocation, Case 2 
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Figure 9. Reconfiguration and Reconfiguration with three DG 

allocation, Case 3 
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Figure 10. Reconfiguration and Reconfiguration with four DG 

allocation, Case 4 
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Table 3. Reconfiguration and DG allocation results 
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VI. CONCLUSION 

Feeder reconfiguration and DG placement approach 

employing new method of independent loop identification 

is used to minimize energy losses and improving network 

voltage on radial electrical networks. Several major 

observations can be derived from the studies, as follows: 

New algorithm to independent loop identification is 

used for large networks. 

1. GA is used for reconfiguration. 

2. Analytical method is applied for DG allocation. 

3. proper feeder reconfiguration and capacitor inserting 

will effectively reduce power losses of distribution 

networks. 

4. Considering both setting of DG and feeder 

reconfiguration can effect on losses reduction than 

considering them lonely or separately (approximately 

20%). 

5. Moreover, the voltage profile can be improved as well 

as the power-loss reduction by the proposed method. 

6. With a proper weights, loss reduction and voltage 

improvement is achieved in this study. 

The proposed approach was tested and validated in 

IEEE 33-bus distribution test system. 
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