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Abstract- A problem of determination of ultimate load of 

an annular three-layered plate whose middle layer was 

reinforced with four systems of fibers is studied in this 

paper. The inner contour of the plate is simply supported, 

the external one is built-in. It is shown that the plate is 

divided into five annular zones, and in each of these 

zones different plastic states are realized. Static fields of 

moments are determined, the equations for unknown radii 

between plastic zones and also equations for determining 

reactions at supports and ultimate loads are determined. 

 

Keywords: Three-Layered Composite, Bending, Load-

Bearing Capacity, Simply-Supported, Built-in Contour. 

 

I. INTRODUCTION 

The constructions made of composite materials are 

widely used in many branches of national economy. This 

is an artificially created homogeneous material consisting 

of multiple layers, reinforcing fibers and fillers. The filler 

fastens the fibbers and together with layers gives to 

product a stable spatial form.  

The fibers take on themselves the most part of the 

load, the layers take a part of loads and other impacts. At 

present, more than one third of all aircrafts are 

manufactured from composite materials. When producing 

aircrafts, epoxy resin is most used as a filler, a glass fiber 

and carbon fiber are used as reinforcing fibers. Composite 

materials have significant advantages over metals, wood 

and textile.  

These are light weight, the possibility of creating very 

smooth and complex curved, well-streamlined 

aerodynamic surface, absence of corrosion, low level of 

fatigue during long-term deformations, concealing radar 

signatures, etc. [1]. Application of glass fiber-based 

composite materials in Airbus A380 led to reduction of 

aircraft's weight by 15 tons compared with aluminum 

with preservation or improvement of strength properties. 

Approximately one million finest fibers cross from       

one cm2 cross section of the composite propeller of the 

newest USA helicopters propellers. Being excellent from 

the point of view of structural rigidity, the reinforced 

composites are weak in penetration of moisture, 

aggressive media and also exposure to high temperature. 

All these, makes actual the study of load-bearing capacity 

of multi-layered fibrous composite materials.  

In [2], hypersurfaces of fluidity of a three-layered 

composite shell whose middle surface was reinforced 

with fibers, the external layers defend the construction 

from negative impact and simultaneously strengthen it, 

were built. Load-bearing capacity of a three-layered 

fibrous annular composite plate at various conditions of 

built-in along the contour, was studied in [3-8]. Statically 

admissible fields of bending moments and kinematic 

admissible fields of deflection rate were determined.   

 

II. PROBLEM STATEMENT 

 The load-bearing capacity of an annular three-layered 

composite plate simply supported along the inner contour 

and built-in along the external contour is studied in the 

paper. The middle layer of the composite is reinforced 

with four systems of thin fibers arranged in the form of 

films at various distances from the middle of the layer. It 

is assumed that plate is subjected to annular concentrated 

external load in the lateral direction.  

 Equilibrium equation in dimensionless variables has 

the form [3-8]   

1 2( ) ( )

r
ar ar

a

rm m T Ta T p d

a r b

  
 

      
 
 

 

  (1) 

where the prime indicates the derivative with respect to r, 

1m  and 2m
 
are dimensionless principal bending moments 

at radial and peripheral direction,
 

 p p r is the 

dimensionless external load, Т is the unknown linear load 

in the internal contour of the plate.  

 

 
 

Figure 1. Fluidity hexagon 
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 Equation (1) must be solved under the following 

boundary conditions: on simply supported edge r a  

1 0, 0m w  ; at the built-in edge r b  0w  , 

/ 0dw dr   or 1 10m m  , were  w r  is deflection rate.  

 Equation (1) is an ordinary differential equation with 

two unknowns 1m  and 2m . The second equation between 

these quantities is given by the plastic yield condition that 

was constructed in [2] (Figure 1). For the sides АВ and 

AF of the hexagon we have the following limit values of 

positive and negative bending moments  
2 2

0 0 1 0 2 0 3 0 4 0 5 0 0i i i i i i i im m c c s c s c q c q c s q         (2) 

for the sides CD and DE  
2 2

0 0 1 0 2 0 3 0 4 0 5 0 0[ ]i i i i i i i im m c c s c s c q c q c s q           (3)                                

and for the sides EF and ВС  

2 1 1 2 1 2,m m m m        (4) 

respectively. Here for the coefficients we used the 

following denotation: 
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where, id   and id  are dimensionless distances (referred 

to the thickness Н) from the middle surface to the upper 

and lower layers of the fibers,
 
k  and   are the ratios of 

ultimate loads of the matrix and external layers at 

extension and compression, respectively, 0is  and 0is  are 

dimensionless forces for fibers at extension and 

compression, respectively, 0q is dimensionless yield 

point of material of external layers at compression [2]. 

 

III. PROBLEM SOLUTION 

 For the given type of load q (directed down) from 

boundary conditions it follows that radial bending 

moment will have positive value (extension of lower and 

compression of upper layers) right up to the area adjacent 

to the built-in external contour, where it changes sign. In 

this case, plastic state of the plate is determined by the 

side 1E E  of the fluidity hexagon near the inner edge 

r a , on which 1 0m 
 
and

 2 20m m  , while on the 

contour r b  1 01m m  . Thus, we must to look for the 

solution of the problem according to the following 

sequence of fluidity regimes 1E E-EF-FA-AB-BC . Then 

the plate is divided into five annular zones in which the 

yield condition is linear and Equation (1) is easily 

integrated. 

 Assume that the load ( )p r concentrated on a circle of 

radius ( , )c a b  is given in the form ( ) ( )p r p r c  , 

where ( )x  is Dirac's delta function [6]. Calculating the 

integral  

( ) ( )

r
ar

a

T p c d pcI r c             

where ( )I r c  is Heaviside's unit function, we rewrite 

Equation (1) in the form   

 1 2( )rm m pcI r c Ta     

 

(5) 

 On the section 1a r    the plastic regime 1E E  is 

realized, according to which 2 20m m  . Substituting this 

into Equation (5), after integration we have  

   1 20( )r m m Ta r pc r c I r c C        

After determining the constant С from the condition 

1( ) 0m a  , we find  

     1 20( )r m m Ta r a pc r c I r c      

 

(6) 

 From (6) it is seen that provided 1a c   , on the 

circumference r c  the radial moment does not go a 

jump, and its derivative 1 /dm dr possesses the jump 

1dm
p

dr
  , that is consistent with the equilibrium 

Equation (5). Here the square bracket means a jump, i.e. 

the difference of values of the corresponding quantity in 

the right and left hand side of the point under 

consideration. Determining 1 1( )m   from (6) and 

substituting in formula 2 1 1m m   , as a result we get

20m , which will result in  

   

1
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1 1
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pc c I c
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

   
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 

  

 (7) 

 In the domain 1 2r    we have the state EF, at 

which 2 1 1m m   . Equation of equilibrium (5) takes 

the form  1 1 1(1 ) ( )rm m Ta pcI r c        . 

 The solution of this equation i

 
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1 1

1 1

Ta pc c
m Cr I r c

r


 

 




   
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     

 

Determining an arbitrary constant C  from continuity 

condition 1 2 10( )m m  , we get   
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           

 (8) 

 It is easy to see that even in this domain under the 

condition 1 2c   on the circumference r c  radial 

moment does not undergo a jump, while its derivative 

1 /dm dr has a jump equal to p . Using continuity 

condition 1 1( ) 0m   , we get 
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  (9) 

When the stress state of plate corresponds to the side FA 

2 3( )r   ,  for deformation rates we have  [1]

1 2

1
0 , 0w w

r
         

The solution of these equations will be 

0 const,w w  i.e. the plate’s annular part, 2 3r      

moves in this domain as an absolute rigid body. 

Circumferences 2r   and 3r   are hinged circles, 

where the first derivate of deflection rate undergoes a 

rupture, deflection rate is continuous, while radial 

bending moment has a maximum value. 

 On the interval 3 4r    we have the state АВ, at 

which 2 20m m . From Equation (5) we get 

   1 20( )r m m Ta r pc r c I r c C       

Here we determine the arbitrary constant C from 

condition 1 3 10( )m m  , then  
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 (10) 

 Determining 1 4( )m   from formula (10) and 

substituting in 2 1 2m m   , according to continuity 

condition we must get 20m ; then 
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3 4 3 3
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 (11) 

 In the domain 4 r b   we have the state ВС, at 

which  2 1 2m m    . Here the solution might be 

obtained from (8) by replacing the quantities  10 2 1, ,m    

by 10 2, ,m b  ,  respectively:  
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(12)  

 Using the solutions (10) and (12) it is easy to show 

that if load circumference r c  is in relevant domain, 

then on this circumference radial moment is continuous, 

while its derivative along the radial coordinate has a jump 

equal to  .p Taking into account 1 4 2 20( )m m      

from Equation (8) for 4r   we find  
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 (13) 

Now let’s study the possibility of continuation of the 

static field on the annular domain 2 3r   . Accepting 

that tangential moment 2m and shear force are continuous 

functions, from the equilibrium equation we get that if 

circumference r c  doesn’t coincide with 

circumferences 2r   and 3  ,r  then derivative 

1 /dm dr  can’t have a jump on them, i.e.  

1 0
dm

dr
   for  2r   and 3 2 3 , ,r c     (14) 

as 1 10m m  on these radii. But when we admit the 

possibility of step-wise change of the moment 2m , from 

the equilibrium Equation (1) we get 

1
2[ ] ,

dm
r m r c

dr

 
  

 
 

(15) 

 As 2[ ]m   at 2r   and 3r   has positive values, 

while 1[ / ]dm dr  on these radii at r c may be only 

negative, then, fulfillment of the condition (15) is 

impossible. From this we conclude that moments field т2  

must be continuous in the domain of  the  plate r c , i.e. 

2 1[ ] [ / ] 0m dm dr   at r c . 

 Assuming 2 3c  
 
and fulfilling the condition 

(14) with using derivative of Equation (8) at 2r   and 

derivative of formula (10) at 3r  , we get 

 10 11Ta m      (16) 

20 10 0m m pc Ta      (17) 

 Equation (16) determines the unknown reaction Та, 

while (17) determines ultimate load, which we easily find 

  10 1

20 20

1
mpc

m m

 

 


 

 

(18)

 
As seen, due to reinforced fibers and covers, the ultimate 

load of the plate increases by 10 1

20

1
m

m

 




  times, 
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because expression 10 1m    is negative, being the 

ordinate of the point F of fluidity hexagon in the plane 

1 2 01 01 1 , ( , )m m F m am    . In the case 1 2 1    it is 

not difficult to get 

 01 1 0 2 2 02

1
2 4

1

k
m q d d s

k


   

       
 

As seen, ultimate load increases with the expression 

inside the square bracket. At 2 2

1
1,   

2
d d       this 

expression has the greatest value 0 022 4q s .  

 Equations (7), (9), (11) and (13) allow to determine 

unknown radii 1 2 3, ,  
 
and 4  . In the case 

2 3c   , these equations are substantially simplified. 

 

IV. CONCLUSION 

 The load bearing ability of an annular three-layered 

plate, whose central layer is reinforced with four systems 

of fibers is determined. All constituents of the plate have 

ideal plastic properties with different ultimate tensile and 

compressive forces. It is assumed that the plate is simply 

supported along the inner, built-in along the outer contour 

and is under the action of a concentrated annular load in 

the upper surface. Statically admissible fields of bending 

moments, the equations that determine ultimate load, 

support reaction and radii of domains corresponding to 

different plastic regimes, are determined. 
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