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Abstract- Nowadays, the software is utilized in almost 

every field of life, including health, industry, automobiles 

etc. Thus, it is imperative that the software must perform 

as expected. It is only possible if the software is free of 

faults. Software fault prediction is used to predict faults in 

the early stage of the software development life cycle. As 

a result, errors can be corrected immediately with minimal 

resources. Due to the versatile nature of software, it 

becomes very difficult for any single technique to predict 

diverse faults. Numerous research studies exist in the 

literature that predicts diverse faults using ensembling, but 

none of the studies detect faults of lower magnitude, which 

constitute the principal cause of failure. So, in this study, 

we propose a heterogeneous ensemble model with 

stacking for predicting those diverse faults. Moreover, 

features play a dominant role in the prediction of diverse 

faults. Consequently, we use a novel SHAP feature 

selection technique that selects the features based on their 

local interpretability. The experimental work is 

implemented in Python on Google Colab. The results show 

that the proposed model detects diverse faults based on the 

SHAP value of features and gives accuracy of more than 

95% in almost all datasets. 

 

Keywords: Fault Prediction, SHAP Feature Selection, 

Heterogeneous Ensembling, SMOTE TOMEK. 

 

1. INTRODUCTION 

 Technology advances at a rapid pace, resulting in better 

application products. High-quality software products 

always demand a great deal of software testing[1]. In the 

early days, manual testing was used to evaluate the quality 

of software, but this was a very complex process because 

it takes a lot of time and effort. As a result, software fault 

prediction is introduced that predicts fault-prone modules 

before their occurrence. It helps the testing team to focus 

only on faulty modules. This will save the scarce testing 

resources that are time, effort, and money. Software 

metrics are the measurable properties of software that 

helps to detect fault-prone modules. Different software 

metrics exist in the literature that depends on the language 

in which software is developed[2]. Predicting faulty 

modules using machine learning techniques is a hot topic 

in recent research studies.  

 Various techniques have been used by researchers for 

predicting faults i.e., NB, SVM, and DT. Researchers 

proved that predicting faults using ensembling is always 

has good prediction results than individual techniques[3]. 

 Class imbalance is an important consideration in fault 

prediction studies. Class imbalance arises when the 

majority class dominates the minority class in a dataset, 

which is common in defect datasets. This imbalance could 

cause classification models to be biased towards the main 

class (non-defect class), lowering prediction accuracy. In 

this issue, several solutions have been presented in [4, 5]. 

 Feature engineering is another crucial issue that has a 

significant impact on the model's performance. Some 

datasets suffer from the problem of multi-collinearity. To 

solve this problem, we need to remove highly correlated 

features. Repetitive characteristics, on the other hand, 

lengthen training time and may even overfit classification 

models. Ref. [6] in his study found that the same classifier 

with different features will give different results. So, 

feature selection plays a crucial role in fault prediction 

models. Many features selection and feature engineering 

techniques are available in the literature. But all these 

existing techniques select the features based on global 

interpretability and there is no transparency regarding how 

much each feature contributes either positively or 

negatively to predict outcome [7]. So, to alleviate this 

consideration, we implement a novel SHAP feature 

selection technique that resolves this problem 

“unpublished” [8].  

 The motive of this study is to propose and implement a 

heterogeneous ensemble fault prediction model based on 

stacking that deal with all these issues and exhibit 

prediction results that are better than existing fault 

prediction frameworks. The reason for using 

heterogeneous ensembling is the diversity feature because 

each different classifier is having a unique ability to detect 

different faults. Due to the small magnitude, those unique 

defects are not counted in traditional frameworks such as 

ensembling based on voting [9]. So, this stacking 

technique will consider those unique faults which are small 

in magnitude. 

The main contributions of this research work are: 

1. Implementation of heterogeneous ensemble model 

based on stacking. 
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2. Handling class imbalance using hybrid technique 

SMOTE + Tomek. 

3. Implementation of novel SHAP features selection 

technique. 

4. Statistical tests is performed to compare the proposed 

model with standalone base classifiers. 

The remaining section of this research work is laid out 

in the following way: Section 2 presents the recent 

ensemble based fault prediction studies; section 3 

discusses the materials and methods being used. Section 4 

includes a detailed explanation of the experimental results. 

The statistical significance and threats to the validity of the 

proposed model are presented in sections 5 and 6; in 

section 7 we discuss the conclusion and future scope. 

 

2. LITERATURE REVIEW 

In this section, the recent research work based on 

ensembling for the prediction of faults will be discussed. 

A recent study was performed where SMPSO-HS-

AdaBoost, an intelligent fusion technique is proposed that 

combines sampling, feature selection, and classification 

approaches together. To alleviate the feature redundancy 

problem, the researcher employs AdaBoost classification 

based on hybrid sampling and particle swarm optimization 

based on subgroup migration feature selection [10]. 

In another study, a solution for the filter rank selection 

problem where multiple diverse filter methods are applied 

independently to obtain the required result. DT and NB are 

used as a classifier to implement the proposed filter 

technique. The result proves that the proposed model 

performs better than the traditional rank-based models 

[11]. A study where Bootstrap aggregating ensemble 

learning technique for software defect prediction is 

proposed. This technique is implemented on object-

oriented modules. The accuracy, recall, precision, F-

measure, and AUC-ROC efficiency of the suggested 

technique are compared to those of several competent 

machine learning algorithms.  

The proposed strategy out performed existing 

approaches based on simulation results and performance 

comparisons [12]. 

 Another sequential ensemble model for the prediction 

of software faults was presented. Eight datasets of the 

promise data repository are used to empirically evaluate 

the results of the proposed model. The results are better 

than the established models [13]. A comparative study was 

performed, where twenty-one classifiers from five 

categories are applied to five open source applications to 

find the best classifier with Object-Oriented metrics. 

MATLAB's classification Learner App was used to test 

multiple classification models. Bagging trees and SVM are 

found to be the best predictors among twenty-one 

classifiers [14]. 

 Another fault prediction framework that employs the 

Multi-Filter feature selection technique and the MLP as the 

classifier was proposed. The results are calculated both by 

using and without using over sampling technique. The 

results proved that the framework using oversampling 

technique provides better results than without 

oversampling [15]. A comparative study was performed 

where the classification results using random forest are 

compared with SVM, backpropagation NN, and D Trees. 

Random forest is performing better than other classifiers 

[16]. 

 
3. MATERIAL AND METHODS 

 

3.1. Datasets Description 

Six available benchmark datasets from PROMISE 

Data Repository and GitHub [17]are used to aid replication 

and verification of our investigations. These datasets are 

gathered from real NASA software programs that are 

based on spacecraft instruments, storage management, and 

soon. These datasets are written in C or C++ language. 

Table 1 provides a full description of these datasets. 

 
Table 1. Description of datasets 

 

Name of 

dataset 
Language 

# of 

Attributes 

# of 

Modules 

# of Non 

Defects 

# of 

Defects 

% of Non 

Defects 

% of 

Defects 

Imbalance 

Ratio 

ar1 C 31 121 112 9 93% 7% 8.04% 

Camel 1.6 C++ 24 965 776 189 80% 20% 24% 

MW1 C 38 253 226 27 89% 11% 12% 

PC1 C 22 1109 1032 77 93% 7% 7% 

PC2 C 37 745 729 16 98% 2% 2% 

Xerces 1.3 C++ 24 453 241 212 53% 47% 88% 

 

3.2. Methodology 

In this section, we discuss the methodology we use to 

implement our proposed framework mentioned in the 

paper [18]. The success of any machine learning model 

depends upon the data quality we use to train our models 

[19]. So, our first task is to pre-process the data by 

handling missing values, discretizing categorical features, 

and handling outliers [20, 21]. After that, we check 

whether the dataset is balanced or not. If the data is 

unbalanced, we oversample minor labels to make the data 

more balanced.  

To combat with class imbalance in our research, we 

apply the SMOTE + Tomek approach. Then we use chi-

square, manual correlation, and a novel SHAP feature 

selection technique to select features. The Min-Max 

scaling approach is used to normalise the features. Then, 

to predict faulty software modules, we use our suggested 

stacking-based heterogeneous ensembling technique. All 

these experiments are conducted on Goggle Colab using 

python. The framework of our model is described in Figure 

1. 

 

 

https://sciprofiles.com/profile/1392254
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Figure 1. Framework of our proposed methodology 

 
The following section briefly describes the tasks we 

perform for the implementation of our model: 
 

3.2.1. Data Pre-Processing Step 

Data pre-processing is one of the crucial steps of any 

fault prediction model. The work seems half done when 

the pre-processing step is finished. The key tasks we 

undertake as part of data pre-processing are mentioned 

below. 
 

3.2.1.1. Handling Missing Values and Feature Scaling 

Almost all real-world data have some missing value 

columns. After analysing our fault dataset, we also find 

some missing value columns; to fill these missing values 

we replace them with the mean of that column. The 

distribution of values of attribute total_loc of dataset ar1 is 

mentioned in Figure 2. These feature values are of 

different magnitude and the feature that has a high 

magnitude will dominate the prediction result, so we 

normalize those features using the min-max scaling 

technique to take all features on the same scale. The values 

of features after scaling are mentioned in Figure 3. 
 

 
 

Figure 2. Frequency distribution of total_loc of dataset ar1 

 
 

Figure 3. Magnitude of features after min-max scale 

 

3.2.1.2. Handling Outliers 

All values that are highly dispersed from the mean 

value are called outliers and it negatively affects the 

performance of the model. Figure 4 signifies that almost 

all features are having outliers. To remove those outliers, 

we replace the outlier values with the median of that 

attribute. The attribute hastead_effort after the removal of 

outliers is shown in Figure 5. 
 

 
 

Figure 4. Boxplot of features of dataset ar1 
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Figure 5. Boxplot of halstead_effort after outlier removal 

 

3.2.1.3. Handling Class Imbalance 

The majority of the datasets available for software fault 

prediction are highly imbalanced. The distribution of 

defects of dataset ar1 is mentioned in Figure 6. To balance 

data sets, we use a hybrid resampling methodology called 

SMOTE + Tomek “unpublished” [22]. The distribution of 

class labels after performing SMOTE + Tomek is shown 

in Figure 7. 

 

 
 

Figure 6. Distribution of defects of dataset ar1 

 

 
 

Figure 7. Defects distribution after SMOTE + Tomek 

 

 
 

Figure 8. Relation between mcc and defects 

 

3.2.2. Feature Selection 

Feature selection is the process of identifying the most 

important characteristics from a dataset and uses those 

features for predicting faults. Based on Figure 8, there is 

no relation between multiple_condition_count and defects. 

A huge number of irrelevant features exist in the data that 

will exponentially increase training time and raises the risk 

of over fitting models [23]. In this research work, we have 

used three different feature selection techniques i.e., chi-

square technique, correlation-based technique, and a novel 

SHAP feature selection technique to find optimal features 

to give better results. These are briefly discussed below. 
 

3.2.2.1. Correlation-Based Feature Selection Technique 

CFS [24] is a well-known technique for determining 

the importance of features by calculating the correlation 

between features and target class, as well as between 

features and other characteristics. Figure 9 shows the 

correlation matrix of dataset ar1. The yellow section shows 

the highly correlated features. 
 

3.2.2.2. SHAP Technique 

SHapley Additive exPlanations technique is the novel 

technique for feature selection. It increases the 

transparency in the prediction process. The major benefits 

of SHAP are global interpretability means it helps us to 

know the contribution of each predictor in the whole 

population, local interpretability where it finds the 

predictor's contribution on each observation. The third 

benefit is the SHAP value can be identified for any tree-

based model. Figure 10 describes the contribution of each 

feature based on the SHAP value. The ranking of features 

is mentioned in Figure 11. The red line shows the positive 

contribution of the feature where the blue line shows the 

negative contribution. The contribution of features on first 

observation of dataset ar1 is presented in Figure 12. 
 

3.2.3. Fitting Base Models and Meta-Models 

In our research work, we have selected the base models 

based on their diversity; it means they belong to different 

classification categories. Therefore, their prediction 

capability will be different. Each base classifier will detect 

unique and different kinds of faults. The base classifier we 

select is described below. 
 

3.2.3.1. Quadratic Discriminant Analysis (QDA) 

QDA is always attractive because it finds solutions for 

those classification problems that are not linearly 

separable. It works on multiclass problems and provides 

better predictions. It needs no hyper-parameter tuning [25]. 
 

3.2.3.2. Light Gradient Boosting Method (LGBM) 

Light GBM is a tree-based gradient boosting method 

that can be used for classification and other machine 

learning problems. It gives higher accuracy than another 

boosting algorithm because it splits the tree leaf-wise. 

Therefore, it gives fast results and is named “Light”, 

“unpublished” [26]. 
 

3.2.3.3. Stochastic Gradient Descent (SGD) 

Stochastic gradient descent abbreviated as SGD is an 

iterative algorithm used to find the optimal parameters for 

the model. It works better on the massive dataset and gives 

fast results than gradient and batch gradient descent [27]. 
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Figure 9. Correlation matrix of dataset ar1

 
 

Figure 10. Impact of each feature on fault prediction

 
 

Figure 11. Ranking of features based on SHAP value 
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Figure 12. Features contribution on observation 1 

 
3.2.3.4. Complement Naive Bayes (CNB) 

Complement Naive Bayes works better with 

imbalanced datasets. As the name suggests, for each class 

it finds the probability of observation. So the smallest 

value indicates the highest probability of observation 

belonging to that class “unpublished” [28]. 
 

3.2.3.5. Extremely Randomized Trees Classifier (Extra 

Tree Classifier) 

Extra Trees Classifier is a form of ensemble learning 

algorithm that outputs a classification result by 

aggregating the results of several de-correlated decision 

trees collected in the “forest” [29]. 
 

3.2.3.6. Meta-Model 

Currently, the most prevalent learning strategy as a 

meta-classifier is logistic regression [30]. So, in our work, 

we also use logistic regression as a meta-classifier.  
 

3.3. Performance Evaluation Step 

Performance evaluation is the important step for 

accessing the performance of any defect prediction model. 

In this research work, the following performance metrics 

are used to evaluate the efficiency of the model. All these 

metrics are defined in [31]. 
 

3.3.1. Accuracy 

Accuracy is the base metric for model evaluation. It 

works better only if the data are balanced. 

Accuracy (all correct / all) = TP+TN / P + N 
 

3.3.2. Precision 

Precision identifies the actual faulty modules among 

predicted modules. 

Precision = TP/ TP+FP 
 

3.3.3. Recall 

Recall identifies the actual faulty modules among the 

faulty modules.  

Recall = TP / P 
 

3.3.4. F1-Score 

F-measure is calculated based on precision and recall. 
 

3.3.5. MCC 

It is a measure of the quality of binary classifications. 

 

4. RESULTS AND DISCUSSION 

The outcomes of the experiments are described in this 

section. The results obtained by implementing our model 

are depicted in tables and it shows that our proposed model 

gives better results in almost all datasets. Different 

performance metrics are used to evaluate the performance 

of the model like accuracy, precision, recall, MCC, f1-

score, and ROC AUC. The following Table 2, 3, 4, 5, 6, 

and 7 depicts the scores of these metrics on dataset ar1, 

camel 1.6, mw1, pc1, pc2, and xerces. The ROC AUC 

scores of these datasets are mentioned in Figures 13, 14, 

15, 16, 17, and 18.  

As we can see the accuracy of the proposed model is 

more than 90% in all datasets except mw1 and xerces. The 

MCC value of our model is higher in dataset ar1. The 

precision is also more than 90%, except for pc2 and xerces. 

The following figures shows that the ROC AUC value is 1 

in ar1 and camel 1.6. The value of 0.99 is achieved in pc1 

and pc2. So, the implemented heterogeneous model based 

on stacking performs better than all existing fault 

prediction models and standalone base classifiers. 

 
Table 2. Results on dataset ar1 

 

Classifiers Accuracy Recall Precision MCC F1 

qda 0.98 1 1 1 1 

lgbm 0.97 1 0.943 0.941 0.97 

sgd 0.909 1 0.846 0.832 0.908 

cnb 0.833 1 0.75 0.707 0.829 

etc 0.985 1 0.971 0.97 0.985 

stack 0.985 1 0.971 0.97 0.985 

 
Table 3. Results on dataset camel1.6 

 

Classifiers Accuracy Recall Precision MCC F1 

qda 0.618 0.364 0.741 0.275 0.592 

lgbm 0.844 0.829 0.855 0.689 0.844 

sgd 0.614 0.855 0.577 0.26 0.59 

cnb 0.586 0.754 0.564 0.182 0.573 

etc 0.864 0.899 0.84 0.73 0.864 

stack 0.866 0.864 0.868 0.732 0.866 

 

5. STATISTICAL SIGNIFICANCE TEST 

PROCEDURE 

Statistical testing is used to determine the statistical 

significance of the model. A pairwise T-test is performed 

to know the statistical difference between the proposed 

model and base classifiers. Two hypothesis are framed to 

determine the difference; Null and Alternate hypothesis.
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Table 4. Results on dataset mw1                                                                   Table 5. Results on dataset pc1 

 
                                      Table 6. Results on dataset pc2                               Table 7. Results on dataset xerces 

 

 

 

 

 

 

 

 

 
 

                                           Figure 13. AUC values on dataset ar1                                    Figure 14. AUC values on dataset camel1.6 

 

 
 

                                       Figure 15. AUC values on dataset mw1                                          Figure 16. AUC values on dataset pc1 

 

 
 

                                           Figure 17. AUC values on dataset pc2                                        Figure 18. AUC values on dataset xerces 

 

Classifiers Accuracy Recall Precision MCC F1 

qda 0.618 0.364 0.741 0.275 0.592 

lgbm 0.844 0.829 0.855 0.689 0.844 

sgd 0.596 0.268 0.782 0.256 0.548 

cnb 0.586 0.754 0.564 0.182 0.573 

etc 0.873 0.908 0.848 0.747 0.873 

stack 0.86 0.851 0.866 0.719 0.86 

Classifiers Accuracy Recall Precision MCC F1 

qda 0.67 0.395 0.878 0.407 0.643 

lgbm 0.956 0.964 0.949 0.913 0.956 

sgd 0.794 0.994 0.711 0.642 0.786 

cnb 0.65 0.466 0.738 0.324 0.638 

etc 0.969 0.981 0.959 0.939 0.969 

stack 0.968 0.974 0.962 0.935 0.968 

Classifiers Accuracy Recall Precision MCC F1 

qda 0.67 0.395 0.878 0.407 0.643 

lgbm 0.956 0.964 0.949 0.913 0.956 

sgd 0.794 0.994 0.711 0.642 0.786 

cnb 0.65 0.466 0.738 0.324 0.638 

etc 0.969 0.981 0.959 0.939 0.969 

stack 0.968 0.974 0.962 0.935 0.968 

Classifiers Accuracy Recall Precision MCC F1 

qda 0.375 0.522 0.398 -0.257 0.361 

lgbm 0.449 0.403 0.435 -0.105 0.447 

sgd 0.485 0.925 0.488 -0.033 0.367 

cnb 0.471 0.448 0.462 -0.06 0.47 

etc 0.493 0.493 0.485 -0.015 0.493 

stack 0.449 0.478 0.444 -0.102 0.448 
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A) Null hypothesis H0: H0 signifies there is no 

performance difference between the proposed model and 

standalone base classifiers. 

B) Alternate Hypothesis H1: H1 signifies there is a 

significant performance difference between the proposed 

model and standalone base classifiers. To find the 

statistical significance of the model, we use the “T-test and 

F-test procedure”. Figure 19 shows the boxplot of the 

mean difference between the proposed model and 

individual base classifiers. The mean value of the proposed 

model is better than base classifiers. Table 8 shows the 

pairwise t-test results on all datasets. The bold values show 

the significant statistical difference between the proposed 

model and base classifiers. Table 9 shows the f-value 

based on the accuracy of all datasets. The f-value of 11.149 

is higher so the difference is significant. 

 

 
 

Figure 19. Mean scores of PM in comparison with B 

 
Table 8. Pairwise T-test between PM and BC 

 

Pairwise T-test based on Accuracy values 

Pairs P-Value Statistic 

pair 1 0.012218 3.832349325 

Pair 2 0.005551 4.656203156 

pair 3 0.023349 3.224474649 

pair 4 0.009919 4.040390789 

pair 5 0.411282 -0.896057871 

 
Table 9. F-test between proposed model and Base Classifier 

 

F-test based on all performance metrics 

Metric F-Value Result 

Accuracy 11.149 Significant 

 

6. THREATS TO VALIDITY 

In this research work, we have used real world dataset. 

Due to versatile nature of software it can be related to any 

domain and the performance of model is highly dependent 

on data. As a result, outcomes in these datasets may not be 

generalizable. Moreover, to determine the model's 

statistical significance we have used T-test and F-test. 

Others may use Friedman or Kruskal Wallis tests. It 

depends on the researcher's experimental purpose. 

Another concern is the choice of classifiers in building 

heterogeneous fault prediction models. Other classifiers 

can be used to build the model and definitely the results 

will be different. 

 

7. CONCLUSION AND FUTURE SCOPE 

The main goal of this study is to implement the 

heterogeneous ensembling technique with a novel SHAP 

feature selection technique. The reason behind performing 

this study is predict minority faults that always remains 

undetected and becomes the primary cause of failure. To 

the best of my knowledge, all fault prediction studies 

implemented to date have used feature selection based on 

global interpretability. None of the studies focused on the 

concept of local interpretability. SHAP is the only feature 

selection technique that works on local interpretability. 

The intuition behind using heterogeneous classifiers is the 

unique property of each classifier in detecting different 

faults. So, we implemented a combined model that focuses 

on data quality as well as the application of heterogeneous 

classifiers. The results proved that, except for dataset 

Xerces, our proposed methodology outperforms in all 

datasets than existing frameworks. 

This work can be extended by building same 

heterogeneous model with different sets of classifiers and 

results of this model can be used for comparison. 

Moreover, different feature selection and feature 

engineering techniques can be used and can be 

implemented on different datasets. 
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