

International Journal on

“Technical and Physical Problems of Engineering”

(IJTPE)

Published by International Organization of IOTPE

ISSN 2077-3528

IJTPE Journal

www.iotpe.com

ijtpe@iotpe.com

December 2021 Issue 49 Volume 13 Number 4 Pages 63-71

63

ENHANCED HETEROGENEOUS ENSEMBLE TECHNIQUE FOR

IMPROVING SOFTWARE FAULT PREDICTION

J. Goyal Jain B. Kishan

Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak, India

jyoti.goyal24@gmail.com, balkishan248@gmail.com

Abstract- Nowadays, the software is utilized in almost

every field of life, including health, industry, automobiles

etc. Thus, it is imperative that the software must perform

as expected. It is only possible if the software is free of

faults. Software fault prediction is used to predict faults in

the early stage of the software development life cycle. As

a result, errors can be corrected immediately with minimal

resources. Due to the versatile nature of software, it

becomes very difficult for any single technique to predict

diverse faults. Numerous research studies exist in the

literature that predicts diverse faults using ensembling, but

none of the studies detect faults of lower magnitude, which

constitute the principal cause of failure. So, in this study,

we propose a heterogeneous ensemble model with

stacking for predicting those diverse faults. Moreover,

features play a dominant role in the prediction of diverse

faults. Consequently, we use a novel SHAP feature

selection technique that selects the features based on their

local interpretability. The experimental work is

implemented in Python on Google Colab. The results show

that the proposed model detects diverse faults based on the

SHAP value of features and gives accuracy of more than

95% in almost all datasets.

Keywords: Fault Prediction, SHAP Feature Selection,

Heterogeneous Ensembling, SMOTE TOMEK.

1. INTRODUCTION

 Technology advances at a rapid pace, resulting in better

application products. High-quality software products

always demand a great deal of software testing[1]. In the

early days, manual testing was used to evaluate the quality

of software, but this was a very complex process because

it takes a lot of time and effort. As a result, software fault

prediction is introduced that predicts fault-prone modules

before their occurrence. It helps the testing team to focus

only on faulty modules. This will save the scarce testing

resources that are time, effort, and money. Software

metrics are the measurable properties of software that

helps to detect fault-prone modules. Different software

metrics exist in the literature that depends on the language

in which software is developed[2]. Predicting faulty

modules using machine learning techniques is a hot topic

in recent research studies.

 Various techniques have been used by researchers for

predicting faults i.e., NB, SVM, and DT. Researchers

proved that predicting faults using ensembling is always

has good prediction results than individual techniques[3].

 Class imbalance is an important consideration in fault

prediction studies. Class imbalance arises when the

majority class dominates the minority class in a dataset,

which is common in defect datasets. This imbalance could

cause classification models to be biased towards the main

class (non-defect class), lowering prediction accuracy. In

this issue, several solutions have been presented in [4, 5].

 Feature engineering is another crucial issue that has a

significant impact on the model's performance. Some

datasets suffer from the problem of multi-collinearity. To

solve this problem, we need to remove highly correlated

features. Repetitive characteristics, on the other hand,

lengthen training time and may even overfit classification

models. Ref. [6] in his study found that the same classifier

with different features will give different results. So,

feature selection plays a crucial role in fault prediction

models. Many features selection and feature engineering

techniques are available in the literature. But all these

existing techniques select the features based on global

interpretability and there is no transparency regarding how

much each feature contributes either positively or

negatively to predict outcome [7]. So, to alleviate this

consideration, we implement a novel SHAP feature

selection technique that resolves this problem

“unpublished” [8].

 The motive of this study is to propose and implement a

heterogeneous ensemble fault prediction model based on

stacking that deal with all these issues and exhibit

prediction results that are better than existing fault

prediction frameworks. The reason for using

heterogeneous ensembling is the diversity feature because

each different classifier is having a unique ability to detect

different faults. Due to the small magnitude, those unique

defects are not counted in traditional frameworks such as

ensembling based on voting [9]. So, this stacking

technique will consider those unique faults which are small

in magnitude.

The main contributions of this research work are:

1. Implementation of heterogeneous ensemble model

based on stacking.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 64

2. Handling class imbalance using hybrid technique

SMOTE + Tomek.

3. Implementation of novel SHAP features selection

technique.

4. Statistical tests is performed to compare the proposed

model with standalone base classifiers.

The remaining section of this research work is laid out

in the following way: Section 2 presents the recent

ensemble based fault prediction studies; section 3

discusses the materials and methods being used. Section 4

includes a detailed explanation of the experimental results.

The statistical significance and threats to the validity of the

proposed model are presented in sections 5 and 6; in

section 7 we discuss the conclusion and future scope.

2. LITERATURE REVIEW

In this section, the recent research work based on

ensembling for the prediction of faults will be discussed.

A recent study was performed where SMPSO-HS-

AdaBoost, an intelligent fusion technique is proposed that

combines sampling, feature selection, and classification

approaches together. To alleviate the feature redundancy

problem, the researcher employs AdaBoost classification

based on hybrid sampling and particle swarm optimization

based on subgroup migration feature selection [10].

In another study, a solution for the filter rank selection

problem where multiple diverse filter methods are applied

independently to obtain the required result. DT and NB are

used as a classifier to implement the proposed filter

technique. The result proves that the proposed model

performs better than the traditional rank-based models

[11]. A study where Bootstrap aggregating ensemble

learning technique for software defect prediction is

proposed. This technique is implemented on object-

oriented modules. The accuracy, recall, precision, F-

measure, and AUC-ROC efficiency of the suggested

technique are compared to those of several competent

machine learning algorithms.

The proposed strategy out performed existing

approaches based on simulation results and performance

comparisons [12].

 Another sequential ensemble model for the prediction

of software faults was presented. Eight datasets of the

promise data repository are used to empirically evaluate

the results of the proposed model. The results are better

than the established models [13]. A comparative study was

performed, where twenty-one classifiers from five

categories are applied to five open source applications to

find the best classifier with Object-Oriented metrics.

MATLAB's classification Learner App was used to test

multiple classification models. Bagging trees and SVM are

found to be the best predictors among twenty-one

classifiers [14].

 Another fault prediction framework that employs the

Multi-Filter feature selection technique and the MLP as the

classifier was proposed. The results are calculated both by

using and without using over sampling technique. The

results proved that the framework using oversampling

technique provides better results than without

oversampling [15]. A comparative study was performed

where the classification results using random forest are

compared with SVM, backpropagation NN, and D Trees.

Random forest is performing better than other classifiers

[16].

3. MATERIAL AND METHODS

3.1. Datasets Description

Six available benchmark datasets from PROMISE

Data Repository and GitHub [17]are used to aid replication

and verification of our investigations. These datasets are

gathered from real NASA software programs that are

based on spacecraft instruments, storage management, and

soon. These datasets are written in C or C++ language.

Table 1 provides a full description of these datasets.

Table 1. Description of datasets

Name of

dataset
Language

of

Attributes

of

Modules

of Non

Defects

of

Defects

% of Non

Defects

% of

Defects

Imbalance

Ratio

ar1 C 31 121 112 9 93% 7% 8.04%

Camel 1.6 C++ 24 965 776 189 80% 20% 24%

MW1 C 38 253 226 27 89% 11% 12%

PC1 C 22 1109 1032 77 93% 7% 7%

PC2 C 37 745 729 16 98% 2% 2%

Xerces 1.3 C++ 24 453 241 212 53% 47% 88%

3.2. Methodology

In this section, we discuss the methodology we use to

implement our proposed framework mentioned in the

paper [18]. The success of any machine learning model

depends upon the data quality we use to train our models

[19]. So, our first task is to pre-process the data by

handling missing values, discretizing categorical features,

and handling outliers [20, 21]. After that, we check

whether the dataset is balanced or not. If the data is

unbalanced, we oversample minor labels to make the data

more balanced.

To combat with class imbalance in our research, we

apply the SMOTE + Tomek approach. Then we use chi-

square, manual correlation, and a novel SHAP feature

selection technique to select features. The Min-Max

scaling approach is used to normalise the features. Then,

to predict faulty software modules, we use our suggested

stacking-based heterogeneous ensembling technique. All

these experiments are conducted on Goggle Colab using

python. The framework of our model is described in Figure

1.

https://sciprofiles.com/profile/1392254

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 65

Figure 1. Framework of our proposed methodology

The following section briefly describes the tasks we

perform for the implementation of our model:

3.2.1. Data Pre-Processing Step

Data pre-processing is one of the crucial steps of any

fault prediction model. The work seems half done when

the pre-processing step is finished. The key tasks we

undertake as part of data pre-processing are mentioned

below.

3.2.1.1. Handling Missing Values and Feature Scaling

Almost all real-world data have some missing value

columns. After analysing our fault dataset, we also find

some missing value columns; to fill these missing values

we replace them with the mean of that column. The

distribution of values of attribute total_loc of dataset ar1 is

mentioned in Figure 2. These feature values are of

different magnitude and the feature that has a high

magnitude will dominate the prediction result, so we

normalize those features using the min-max scaling

technique to take all features on the same scale. The values

of features after scaling are mentioned in Figure 3.

Figure 2. Frequency distribution of total_loc of dataset ar1

Figure 3. Magnitude of features after min-max scale

3.2.1.2. Handling Outliers

All values that are highly dispersed from the mean

value are called outliers and it negatively affects the

performance of the model. Figure 4 signifies that almost

all features are having outliers. To remove those outliers,

we replace the outlier values with the median of that

attribute. The attribute hastead_effort after the removal of

outliers is shown in Figure 5.

Figure 4. Boxplot of features of dataset ar1

Fault

data

Majority

class

Minority

class

Testing

data

Training data

Handling

missing

values

Handling

Outliers

Scaling

Features using

Min-Max

Correlation

method

SHAP method

Base Classifiers

QDA

LGBM

SGO

CNB

Extra Trees

Meta Classifier

Logistic

Regression

Resultant

Model

Test Data

Model

Evaluation

Final

Prediction

Pre-processing

Feature

Selection Heterogeneous Ensemble Model

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 66

Figure 5. Boxplot of halstead_effort after outlier removal

3.2.1.3. Handling Class Imbalance

The majority of the datasets available for software fault

prediction are highly imbalanced. The distribution of

defects of dataset ar1 is mentioned in Figure 6. To balance

data sets, we use a hybrid resampling methodology called

SMOTE + Tomek “unpublished” [22]. The distribution of

class labels after performing SMOTE + Tomek is shown

in Figure 7.

Figure 6. Distribution of defects of dataset ar1

Figure 7. Defects distribution after SMOTE + Tomek

Figure 8. Relation between mcc and defects

3.2.2. Feature Selection

Feature selection is the process of identifying the most

important characteristics from a dataset and uses those

features for predicting faults. Based on Figure 8, there is

no relation between multiple_condition_count and defects.

A huge number of irrelevant features exist in the data that

will exponentially increase training time and raises the risk

of over fitting models [23]. In this research work, we have

used three different feature selection techniques i.e., chi-

square technique, correlation-based technique, and a novel

SHAP feature selection technique to find optimal features

to give better results. These are briefly discussed below.

3.2.2.1. Correlation-Based Feature Selection Technique

CFS [24] is a well-known technique for determining

the importance of features by calculating the correlation

between features and target class, as well as between

features and other characteristics. Figure 9 shows the

correlation matrix of dataset ar1. The yellow section shows

the highly correlated features.

3.2.2.2. SHAP Technique

SHapley Additive exPlanations technique is the novel

technique for feature selection. It increases the

transparency in the prediction process. The major benefits

of SHAP are global interpretability means it helps us to

know the contribution of each predictor in the whole

population, local interpretability where it finds the

predictor's contribution on each observation. The third

benefit is the SHAP value can be identified for any tree-

based model. Figure 10 describes the contribution of each

feature based on the SHAP value. The ranking of features

is mentioned in Figure 11. The red line shows the positive

contribution of the feature where the blue line shows the

negative contribution. The contribution of features on first

observation of dataset ar1 is presented in Figure 12.

3.2.3. Fitting Base Models and Meta-Models

In our research work, we have selected the base models

based on their diversity; it means they belong to different

classification categories. Therefore, their prediction

capability will be different. Each base classifier will detect

unique and different kinds of faults. The base classifier we

select is described below.

3.2.3.1. Quadratic Discriminant Analysis (QDA)

QDA is always attractive because it finds solutions for

those classification problems that are not linearly

separable. It works on multiclass problems and provides

better predictions. It needs no hyper-parameter tuning [25].

3.2.3.2. Light Gradient Boosting Method (LGBM)

Light GBM is a tree-based gradient boosting method

that can be used for classification and other machine

learning problems. It gives higher accuracy than another

boosting algorithm because it splits the tree leaf-wise.

Therefore, it gives fast results and is named “Light”,

“unpublished” [26].

3.2.3.3. Stochastic Gradient Descent (SGD)

Stochastic gradient descent abbreviated as SGD is an

iterative algorithm used to find the optimal parameters for

the model. It works better on the massive dataset and gives

fast results than gradient and batch gradient descent [27].

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 67

Figure 9. Correlation matrix of dataset ar1

Figure 10. Impact of each feature on fault prediction

Figure 11. Ranking of features based on SHAP value

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 68

Figure 12. Features contribution on observation 1

3.2.3.4. Complement Naive Bayes (CNB)

Complement Naive Bayes works better with

imbalanced datasets. As the name suggests, for each class

it finds the probability of observation. So the smallest

value indicates the highest probability of observation

belonging to that class “unpublished” [28].

3.2.3.5. Extremely Randomized Trees Classifier (Extra

Tree Classifier)

Extra Trees Classifier is a form of ensemble learning

algorithm that outputs a classification result by

aggregating the results of several de-correlated decision

trees collected in the “forest” [29].

3.2.3.6. Meta-Model

Currently, the most prevalent learning strategy as a

meta-classifier is logistic regression [30]. So, in our work,

we also use logistic regression as a meta-classifier.

3.3. Performance Evaluation Step

Performance evaluation is the important step for

accessing the performance of any defect prediction model.

In this research work, the following performance metrics

are used to evaluate the efficiency of the model. All these

metrics are defined in [31].

3.3.1. Accuracy

Accuracy is the base metric for model evaluation. It

works better only if the data are balanced.

Accuracy (all correct / all) = TP+TN / P + N

3.3.2. Precision

Precision identifies the actual faulty modules among

predicted modules.

Precision = TP/ TP+FP

3.3.3. Recall

Recall identifies the actual faulty modules among the

faulty modules.

Recall = TP / P

3.3.4. F1-Score

F-measure is calculated based on precision and recall.

3.3.5. MCC

It is a measure of the quality of binary classifications.

4. RESULTS AND DISCUSSION

The outcomes of the experiments are described in this

section. The results obtained by implementing our model

are depicted in tables and it shows that our proposed model

gives better results in almost all datasets. Different

performance metrics are used to evaluate the performance

of the model like accuracy, precision, recall, MCC, f1-

score, and ROC AUC. The following Table 2, 3, 4, 5, 6,

and 7 depicts the scores of these metrics on dataset ar1,

camel 1.6, mw1, pc1, pc2, and xerces. The ROC AUC

scores of these datasets are mentioned in Figures 13, 14,

15, 16, 17, and 18.

As we can see the accuracy of the proposed model is

more than 90% in all datasets except mw1 and xerces. The

MCC value of our model is higher in dataset ar1. The

precision is also more than 90%, except for pc2 and xerces.

The following figures shows that the ROC AUC value is 1

in ar1 and camel 1.6. The value of 0.99 is achieved in pc1

and pc2. So, the implemented heterogeneous model based

on stacking performs better than all existing fault

prediction models and standalone base classifiers.

Table 2. Results on dataset ar1

Classifiers Accuracy Recall Precision MCC F1

qda 0.98 1 1 1 1

lgbm 0.97 1 0.943 0.941 0.97

sgd 0.909 1 0.846 0.832 0.908

cnb 0.833 1 0.75 0.707 0.829

etc 0.985 1 0.971 0.97 0.985

stack 0.985 1 0.971 0.97 0.985

Table 3. Results on dataset camel1.6

Classifiers Accuracy Recall Precision MCC F1

qda 0.618 0.364 0.741 0.275 0.592

lgbm 0.844 0.829 0.855 0.689 0.844

sgd 0.614 0.855 0.577 0.26 0.59

cnb 0.586 0.754 0.564 0.182 0.573

etc 0.864 0.899 0.84 0.73 0.864

stack 0.866 0.864 0.868 0.732 0.866

5. STATISTICAL SIGNIFICANCE TEST

PROCEDURE

Statistical testing is used to determine the statistical

significance of the model. A pairwise T-test is performed

to know the statistical difference between the proposed

model and base classifiers. Two hypothesis are framed to

determine the difference; Null and Alternate hypothesis.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 69

Table 4. Results on dataset mw1 Table 5. Results on dataset pc1

 Table 6. Results on dataset pc2 Table 7. Results on dataset xerces

 Figure 13. AUC values on dataset ar1 Figure 14. AUC values on dataset camel1.6

 Figure 15. AUC values on dataset mw1 Figure 16. AUC values on dataset pc1

 Figure 17. AUC values on dataset pc2 Figure 18. AUC values on dataset xerces

Classifiers Accuracy Recall Precision MCC F1

qda 0.618 0.364 0.741 0.275 0.592

lgbm 0.844 0.829 0.855 0.689 0.844

sgd 0.596 0.268 0.782 0.256 0.548

cnb 0.586 0.754 0.564 0.182 0.573

etc 0.873 0.908 0.848 0.747 0.873

stack 0.86 0.851 0.866 0.719 0.86

Classifiers Accuracy Recall Precision MCC F1

qda 0.67 0.395 0.878 0.407 0.643

lgbm 0.956 0.964 0.949 0.913 0.956

sgd 0.794 0.994 0.711 0.642 0.786

cnb 0.65 0.466 0.738 0.324 0.638

etc 0.969 0.981 0.959 0.939 0.969

stack 0.968 0.974 0.962 0.935 0.968

Classifiers Accuracy Recall Precision MCC F1

qda 0.67 0.395 0.878 0.407 0.643

lgbm 0.956 0.964 0.949 0.913 0.956

sgd 0.794 0.994 0.711 0.642 0.786

cnb 0.65 0.466 0.738 0.324 0.638

etc 0.969 0.981 0.959 0.939 0.969

stack 0.968 0.974 0.962 0.935 0.968

Classifiers Accuracy Recall Precision MCC F1

qda 0.375 0.522 0.398 -0.257 0.361

lgbm 0.449 0.403 0.435 -0.105 0.447

sgd 0.485 0.925 0.488 -0.033 0.367

cnb 0.471 0.448 0.462 -0.06 0.47

etc 0.493 0.493 0.485 -0.015 0.493

stack 0.449 0.478 0.444 -0.102 0.448

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 70

A) Null hypothesis H0: H0 signifies there is no

performance difference between the proposed model and

standalone base classifiers.

B) Alternate Hypothesis H1: H1 signifies there is a

significant performance difference between the proposed

model and standalone base classifiers. To find the

statistical significance of the model, we use the “T-test and

F-test procedure”. Figure 19 shows the boxplot of the

mean difference between the proposed model and

individual base classifiers. The mean value of the proposed

model is better than base classifiers. Table 8 shows the

pairwise t-test results on all datasets. The bold values show

the significant statistical difference between the proposed

model and base classifiers. Table 9 shows the f-value

based on the accuracy of all datasets. The f-value of 11.149

is higher so the difference is significant.

Figure 19. Mean scores of PM in comparison with B

Table 8. Pairwise T-test between PM and BC

Pairwise T-test based on Accuracy values

Pairs P-Value Statistic

pair 1 0.012218 3.832349325

Pair 2 0.005551 4.656203156

pair 3 0.023349 3.224474649

pair 4 0.009919 4.040390789

pair 5 0.411282 -0.896057871

Table 9. F-test between proposed model and Base Classifier

F-test based on all performance metrics

Metric F-Value Result

Accuracy 11.149 Significant

6. THREATS TO VALIDITY

In this research work, we have used real world dataset.

Due to versatile nature of software it can be related to any

domain and the performance of model is highly dependent

on data. As a result, outcomes in these datasets may not be

generalizable. Moreover, to determine the model's

statistical significance we have used T-test and F-test.

Others may use Friedman or Kruskal Wallis tests. It

depends on the researcher's experimental purpose.

Another concern is the choice of classifiers in building

heterogeneous fault prediction models. Other classifiers

can be used to build the model and definitely the results

will be different.

7. CONCLUSION AND FUTURE SCOPE

The main goal of this study is to implement the

heterogeneous ensembling technique with a novel SHAP

feature selection technique. The reason behind performing

this study is predict minority faults that always remains

undetected and becomes the primary cause of failure. To

the best of my knowledge, all fault prediction studies

implemented to date have used feature selection based on

global interpretability. None of the studies focused on the

concept of local interpretability. SHAP is the only feature

selection technique that works on local interpretability.

The intuition behind using heterogeneous classifiers is the

unique property of each classifier in detecting different

faults. So, we implemented a combined model that focuses

on data quality as well as the application of heterogeneous

classifiers. The results proved that, except for dataset

Xerces, our proposed methodology outperforms in all

datasets than existing frameworks.

This work can be extended by building same

heterogeneous model with different sets of classifiers and

results of this model can be used for comparison.

Moreover, different feature selection and feature

engineering techniques can be used and can be

implemented on different datasets.

REFERENCES

[1] "IEEE Standard Glossary of Software Engineering

Terminology", IEEE Std 610.12-1990, pp. 1-84, 31 Dec.

1990.

[2] M. Zhao, C. Wohlin, N. Ohlsson, M. Xie, "A

comparison between software design and code metrics for

the prediction of software fault content", Information and

Software technology, Issue 14, Vol. 40, pp. 801-809, 1998.

[3] I.H. Laradji, M. Alshayeb, L. Ghouti, "Software defect

prediction using ensemble learning on selected features",

Information and Software Technology, Vol. 58, pp. 388-

402, 2015.

[4] C. Pak, T.T. Wang, X.H. Su, "An empirical study on

software defect prediction using over-sampling by

SMOTE", International Journal of Software Engineering

and Knowledge Engineering, Issue 6, Vol. 28, pp. 811-

830, 2018.

[5] R. Shatnawi, "Improving software fault-prediction for

imbalanced data", International conference on innovations

in information technology (IIT), IEEE, Abu Dhabi, UAE,

20 March 2012.

[6] C. Catal, B. Diri, "Investigating the effect of dataset

size, metrics sets, and feature selection techniques on

software fault prediction problem", Information Sciences,

Issue 8, Vol. 179, pp. 1040-1058, 29 March 2009.

[7] K. Gao, T. M. Khoshgoftaar, H. Wang, N. Seliya,

"Choosing software metrics for defect prediction: an

investigation on feature selection techniques", Software:

Practice and Experience, Iss. 5, Vol. 41, pp. 579-606, 2011.

[8] D. Dataman, “Explain Your Model with the SHAP

Values”, Towards Data Science, Sept. 2019,

https://towardsdatascience.com/explain-your-model-with-

the-shap-values-bc36aac4de3d.

[9] D. Bowes, T. Hall, J. Petric, "Software defect

prediction: do different classifiers find the same defects?",

Software Quality Journal, Iss. 2, Vol. 26, pp. 525-552, 2018.

[10] T. Li, L. Yang, K. Li, J. Zhai, "An Intelligent Fusion

Algorithm and Its Application Based on Subgroup

Migration and Adaptive Boosting", Symmetry, Issue 4,

Vol. 13, pp. 569, 2021.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 71

 [11] M. Mabayoje, A. Balogun, A. Bajeh, B. Musa,

“Software Defect Prediction: Effect of Feature Selection

and Ensemble Methods”, UNILORIN Institutional

Repository, September, 2018.

[12] P.S. Kumar, H.S. Behera, J. Nayak, B. Naik,

"Bootstrap aggregation ensemble learning-based reliable

approach for software defect prediction by using

characterized code feature", Innovations in Systems and

Software Engineering, pp. 1-25, 2021.

[13] M. Mangla, N. Sharma, S.N. Mohanty, "A sequential

ensemble model for software fault

prediction", Innovations in Systems and Software

Engineering, pp. 1-8, 2021.

[14] I. Kaur, A. Kaur, "Comparative analysis of software

fault prediction using various categories of

classifiers", International Journal of System Assurance

Engineering and Management, Springer, The Society for

Reliability, Engineering Quality and Operations

Management (SREQOM), India, and Division of

Operation and Maintenance, Lulea University of

Technology, Sweden, Iss. 3, Vol. 12, pp. 520-535, June 2021.

[15] A. Iqbal, S. Aftab, "A Classification Framework for

Software Defect Prediction Using Multi-Filter Feature

Selection Technique and MLP", Int. Journal of Modern

Education & Computer Science, Iss. 1, Vol. 12, 2020.

[16] P. Kumari, A. Chatterjee, D.P. Mohapatra,

"Smart Innovation, Systems and Technologies", Intelligent

and Cloud Computing: Proceedings of ICICC, Vol. 194,

pp. 95-103, 2019.

[17] S.J. Sayyad, "Promise software engineering

repository", http://promise.site.uottawa.ca/SERepository/

[18] J. Goyal, B. Kishan, "TLHEL: Two Layer

Heterogeneous Ensemble Learning for Prediction of

Software Faults", International Journal of Engineering

Trends and Technology, Issue 4, Vol. 69, pp. 16-20, 2021.

[19] J. Goyal, B. Kishan, "Empirical evaluation to identify

the effectiveness of Ensemble technique for Prediction of

Software Fault", International Journal of Advanced

Research in Engineering and Technology (IJARET), Issue

12, Vol. 11, pp. 885-94, December 2020.

 [20] O. Alan, C. Catal, "An outlier detection algorithm

based on object-oriented metrics thresholds", The 24th

IEEE International Symposium on Computer and

Information Sciences, 2009.

[21] O. Alan, C. Catal, "Thresholds based outlier detection

approach for mining class outliers: An empirical case

study on software measurement datasets", Expert Systems

with Applications, Vol. 38, No. 4, pp. 3440-3445, 2011.

[22] R. Aurelius A. Viadinugroho, "Imbalanced

Classification in Python: SMOTE-Tomek Links Method",

Towards Data Science, 18 April 2021,

https://towardsdatascience.com/imbalanced-classification

-in-python-smote-tomek-links-method-6e48dfe69bbc.

[23] H. Wei, C. Hu, S. Chen, Y. Xue, Q. Zhang,

"Establishing a software defect prediction model via

effective dimension reduction", Information Sciences,

Vol. 477, pp. 399-409, March 2019.

[24] M.A. Hall, "Correlation-based feature selection of

discrete and numeric class machine learning", Hamilton,

New Zealand: University of Waikato, Department of

Computer Science, 2000.

[25] S. Srivastava, M.R. Gupta, B.A. Frigyik, "Bayesian

quadratic discriminant analysis", Journal of Machine

Learning Research, Issue 6, Vol. 8, 2007.

[26] M.H. Abdurrahman, B. Irawan, C. Setianingsih, "A

Review of Light Gradient Boosting Machine Method for

Hate Speech Classification on Twitter", The 2nd IEEE

International Conference on Electrical, Control and

Instrumentation Engineering (ICECIE), Kuala Lumpur,

Malaysia, 28 Nov. 2020.

[27] L. Bottou, "Large-scale machine learning with

stochastic gradient descent", Proceedings of

COMPSTAT', pp. 177-186, Physica-Verlag HD, 2010.

[28] P. Horbonos, “Comparing a variety of Naive Bayes

classification algorithms", Towards Data Science, 15

February 2020.
[29] P. Geurts, D. Ernst, L. Wehenkel, "Extremely

randomized trees", Machine learning, Issue 1, Vol. 63, pp.

3-42, 2006.

[30] S. Le Cessie, J.C. Van Houwelingen, "Ridge

estimators in logistic regression", Journal of the Royal

Statistical Society: Series C (Applied Statistics), Issue 1,

Vol. 41, pp. 191-201, 1992.

[31] Z. Li, X. Y. Jing, X. Zhu, "Progress on approaches to

software defect prediction", IET Software, The Institution

of Engineering and Technology, Issue 3, Vol. 12, pp. 161-

175, 2018.

BIOGRAPHIES

Jyoti Goyal Jain received her Bachelor

degree in Computer Applications from

Vaish Mahilla Mahavidyalya Womens

College, Rohtak, India in 2005 and

Master degree in Business

Administration from Maharshi Dayanand

University, Rohtak, India in 2007. She

has passed her Masters also in Computer Applications

from the same university in 2010 and Masters in

Philosophy from Singhania University, Jhunjhunu, India

in 2012. Currently, she is pursuing Ph.D. from Department

of Computer Science and Applications, Maharshi

Dayanand University, Rohtak, India. She has more than 9

publications in national and international journals and

conference proceedings. Her research interests include

machine learning, natural language processing, data

mining, artificial intelligence and software engineering.

Presently. She is working as an Assistant Professor in

Hindu Institute of Management and Technology, Rohtak,

India. She has 10 years of teaching experience.

Bal Kishan received his Ph.D. degree in

Computer Science from Department of

Computer Science and Applications,

Maharshi Dayanand University, Rohtak,

India. He is currently working as an

Assistant Professor in Department of

Computer Science and Applications of

the same university. His research interests include soft

computing, artificial intelligence, data mining, software

engineering.

